~ AD=A037 159 NORTH ELECTRIC CO GALION OWIO F/6 1772 !
: ¢ ICATIONS PROCESSOR SYSTEM, (U)
JAN 77 K HAGSTROM: B BEIZER : F30602=73=C=0314

[N COCMCTIGT




ApA037159

RADC-TR-76-394, Volumes VI & VII (of eight)
Final Technical Report
January 1977

COMMUNICATIONS PROCESSOR SYSTEM

North Electric Company

Approved for public release;
distribution unlimited.




——

. 9
i

Because of the small size of each volume, volumes have been combined into
the following reports: Volumes I - III, Volumes IV & V, Volumes VI & VII,
and Volume VIII.

This report has been reviewed by the RADC Information Office (OI)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign
nations.

This report has been reviewed and approved for publication.

APPROVED: M % bﬁ&%

DANIEL J. McAULIFFE
Project Engineer

o |

FRED I. DIAMOND i 1
Technical Director
Communications & Control Division !

A %«,

FOR THE COMMANDER: ‘

—

JOHN P. HUSS
Acting Chief, Plans Office 4 a

Do not return this copy. Retain or destroy. i




\&

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

% _FRADC R-76-394

e

’ READ INSTRUCTIONS

[ {- ) REPORT MENTATION PAGE BEFORE COMPLETING FORM
W/ . 0/71 2. GOVYT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

w3#{  (of fight)

ey )5 _TYe ;
e ——————————- SO / ?7 Final echnical/Re o
[COMMUNICATIONS PRECESSOR SYSTEM o | L | Jun 973 - Mamana {
e AR T - RN — SN e TR 8

N/A

o

e ———c 8. CONTRACT OR GRANT NUMBER(s)

Mr. Kennj;g Hagstrom k ,/,1: e sy

| o e
Dr.' Boris/Beizer, Data Systems Analysts / ;jgijF30602—73—C16314 !

- -d {

9. PERFORMING ORGANIZATION NAME AND ADDRESS
North Electric Company
553 South Market Street

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

~ | 62702F T |
Galion OH 44833 ;[;? 45190904 (. ’/’_[A
& -
¢

11. CONTROLLING OFFICE NAME AND ADDRESS ¢ e
Rome Air Development Center (DCLT) { j_': Januewy 1977 /-"
Griffiss AFB NY 13441 BT 5

. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)
Same

UNCLASSIFIED
15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

N/A
16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

y

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Because of the small size of each volume, volumes

Daniel J. McAuliffe (DCLT) have been combined into the following reports:
Velumes I - III, Volumes IV & V, Volumes VI & VII,
and Volume VIII.

19. KEY WORDS (Continue on reverse side il necessary and identify by block number)
Communications Switching, Communications Processors, Processor Architecture,
Circuit Switching, Message Switching, Packet Switching, Base Distribution

7)oy 7 -
20. ABSTRACT (Continue on reverse side If necessary and identily by block number)
This report covers the results of a study to develop a hardware architecture
which will be the basis for a family of communications processors for applica-
tions processors for application in circuit, message, packet and base communi-
cations switch configurations. Over 23 switching equipments were investigated
from which a functional baseline was defined for use in the subsequent studies
for evolving an advanced Communications Processor System (CPS) architecture.
These switches included circuit, message, and packet switching equipments which

were felt to be typical of traditional and advanced switchigﬁ;poncepts. As an

DD ,52:",, 1473 EoiTion OF 1 NOV 68 1S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

example, the AN/TTC-39, AUTODIN, ARPA Network were used as part of the circuit,
message and packet switching baselines respectively. Air Force Base Communi-
cations studies were used as the baseline in that area.

From this baseline, a set of fifteen primitive functions were derived which
represent the needed capabilities for any generally applied communications
processor (CP).

The latest in the state-of-the-art in ADP technology was investigated to
determine the best and most viable approach to the CPS. The goal being to
develop a family of CP's which could be used to satisy switching needs for
circuit, message, packet, base communications applications or in an integrated
node of the future.

The results of the investigation were continually the subject of trade-offs
through the use of an analytical modelling technique. The final outcome of
this effort is a ten part specification detailing the performance requirements
of each unit comprising the communications processor.

%his report is organized into eight volumes as follows: Volume I - Executive
Summary; Volume II - Definition of Problem; Volume III - Modelling; Volume

IV - CCC Architecture; Volume V - CPS Architecture; Volume VI - Software
Generation; Volume VII - Appendices; and Volume VIII - CPS Central Processor
Specification.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




PREFACE

~A

Technical Repont, Vofume VI is divided into fourn sections,
each section addressing a specific area of the total communi-
cations switching system scftware generation nequirements.

Section 1 - €Categonrnizes software components from an open-

ational nequinements standpoint, defines the

categonies, and assesses thein impact on the
total operating system,

- Section 2

MDescnibes methods forn rneducing overnall cost
associated with software development and
writing, and identifies the support packages
(including software test facifities) necessany
to implLement the nrecommended approach.

‘Section 3 - Descrnibes the system architectural considenra-
tions that must be evaluated and implLemented
An onden to effect a consolidated overalt
systems sogtware approach.

Section 4 -

Addnesses the nequinemenzts necessary to ident-
ify, select, and configure Circuit and Message
Switch software over a variety of physical

and functional environments, and describes the
gacility necessary to implement the reusable
so0ftware package philosophy.

P t
\ N
y |
K —
 }: wiite o 31 ,
(1.4 Baii €ouiin !
IMR".G"?‘.’.‘F‘!. :
JUSTREIGATEON - v oo ,‘
)] : 2 R
N‘S\NNHC‘. ASATLEIRITT 1R
P SRR

Vi-i

o TR 85V 4




VOLUME VI

SYSTEM GENERATION FACILITIES

TABLE OF CONTENTS

PARAGRAPH TITLE PAGE
1.0 Introduction VIi-1
1.1 On-Line, High Execution Probability VIi-1
Software
1.2 On-Line, Low Execution Probability Soft- VIi-2
ware
1.3 Critical On-Line Software VIi-2
1.4 Critical Off-Line Software VIi-2
1.5 Non-Critical Off-Line Software VI-2
1.6 Configuration Generation Software VIi-3
1.7 System Performance Monitor Software VI-3
1.8 System Analysis Tools VI-3
1.9 Software Development Tools VI-3
1.10 Summary VIi-4
2.0 Software Writing Vi-4
2.1 General Vi-4
2.2 Available Tactics In Reducing Software Vi-4
Costs
2.2.1 Higher Level Languages VI-5
2.2.2 Lower Level Languages VI-6
2.2.3 Flow Charter VIi-7
2.2.3.1 General VIi-7
2.2.3.2 General Facilities of Flow Charter Vi-7
2.2.3.3 Integration with Other Packages Vi-8
2.2.4 Structural Test Generator VIi-9
2.2.4.1 Definition of Structural Test Generator VIi-9
2.2.4.2 Definition of 100% Testing VIi-9
2.2.4.3 Extent of Effort Required VI-9
2.2.4.4 Automation of Structural Testing VI-10
2.2.4.5 The Structural Test Package in Operation VIi-10

VIi-ii




TABLE OF CONTENTS - Continued

PARAGRAPH TITLE PAGE
.2.4.6 Advantages VIi-11

2.2:6 Functional Test Package VI-11
2.2.5.1 General VI-11
2:2:5.2 Scope of Functional Testing Vi-11
2.2.5.3 Component Elements Vi-11
2.2.5.3.1 Format Generator VI-12
2.2.5.3.2 Traffic Generator VIi-12
2.2.5.3.3 Traffic Simulator VI-13
2:.2.5.3.4 Test Administration Package VI-14
2.2.6 Model Builder Package VI-15
2.2.6. General VI-15
2.2.6. Use of the Model VI-15
2.2.6. Building the Model Vi-17
2.2.7 Target Machine Simulator VI-17
2:2:%.1 Reason for a Simulator VI-17
2.2.7.2 Use of the Simulator VI-18
2.2.8 Configuration Generator/Specifier VI-18
2.2.9 Table Generator VI-19
3.0 A New Model Tool Kit for Program Develop- VI-20

ment
3.1 Software Perspective VIi-20
3.2 General Features of a Comprehensive VI-20

Software Development Operating System

(COMSDOS)
3.3 Component Elements VIi-21
3.4 Pre-Requisites VI-22
3.5 Conclusions VI-22
3.6 Recommendations VI-23
4.0 System Generation VI-24
4.1 Software Design VIi-26
4.1.1 Software Development Languages VIi-27
4.1.2 Program Modularity VIi-29

VI-iii

CT A e P TR e




TABLE OF CONTENTS -~ Continued

PARAGRAPH TITLE
4:1:3 Linking Arrangements
4.1.3.1 Identification

4.1.3.2 Correlation

4.1.3.3 Procedures

4:.1:3.3.1 Background

4.1.3.3.2 Structure

4.1.3.3.3 Further Identification
4.1.3.3.4 Further Correlation
4.1.4 Overlay

4.1.5 Executive Control
4.1.5.1 Functional Overview
4.1.5.2 Special Problems
4,1.5.3 Viable Solutions
4.1.5.4 Correlation

4.1.6 Overload Conditions
4.1.6.1 Historical Trends
4.1.6.2 Loading Criteria
4.1.6.3 Prediction Techniques
4.2 System Specification
4.2.1 Physical Configuration
4.2.2 Functional Configuration
4.2.3 Correlation

4.3 User Interface

4.3.1 Equipment

4.3.2 The Process

4.3.3 User Operations
4.3.3.1 Simulation

4.4 Conclusions

VIi-iv

PAGE

VI-32
VI-32
VI-35
VI-36
VI-36
VI-38
VI-42
VI-47
VI-52
VI-53
VI-53
VI-53
VI-54
VI-57
VI-58
VI-58
VIi-59
VI-60
VI-62
VI-62
VIi-64
VI-66
VI-67
VI-67
VI-67
VI-70
VI-73
VI-77




ASCII
BCD
COMSDOS
CPS
DTMF
GASM
HEX

MF

ms

SYS GEN

LIST OF ABBREVIATIONS

American Standard Code for Information Interchange
Binary Coded Decimal

Comprehensive Software Development Operating
Communications Processing System

Dual Tone Multi-Frequency

Generalized Analytical System Model

Hexidecimal

Multi-Frequency

millisecond

Systems Generation

VIi-v




SECTION 1

SOFTWARE COMPONENTS OF A CPS

1.0 INTRODUCTION

It is tempting to recommend a single, simplistic approach
to the reduction of software costs, such as "higher level langu-
ages'", '"modular software', ''reentrant code', ''decision tables',
or some such other nonsense. Any such single minded panacea is
doomed to failure since it presumes that all the software compo-
nents of a communication system are similar and amenable to the
same kind of treatment. 1In fact, the software components of a
Communication Processing System (CPS) represent a diversity as
wide as the entire software field. One would not recommend
"decision tables', say for equal application to the construction
of a matrix inversion program, a payroll program, and an oper-
ating system.

The point of view token here is not to search for a non-
existent strategy (in the game theoretic sense) but for a mixed
strategy of manifold components, each applied in the proper
proportion to the particular kind of communication software
being written. The purpose of this section is to establish
software categories that are distinguished from the point of
view of the tools that are best suited to their construction.
The following categories are convenient:

(1) On-line, high execution probability software.

(2) On-line, low execution probability software.

(3) Critical on-line software.

(4) Critical off-line software.

(5) Non-critical off-line software.

(6) Configuration generation software.

(7) System performance monitor software.

(8) System analysis tools.

(9) Software development tools.

1.1 On-Line, High Execution Probability Software

What is actually meant here, is that software in which the
product of the probability of execution and the resources used
by the programs is a significant fraction of the total resources
of the system. Such software, must, for the present, be pro-
grammed in machine language. Therefore, the emphasis must be on
creating common software and the use of software development

Vi-1




tools that will alleviate the programming costs. Approximately
40%-50% of the on-line software of a CPS falls into this cate-
gory. This comprises, perhaps, 25% of the total software as-
sociated with a communication system.

1.2 On-Line, Low Execution Probability Software

This is on-line software which, despite large size, has a
low execution probability and does not therefore statistically
contribute significantly to the utilization of resources. Ex-
amples of this kind of software are:

(1) Operator command interpretation and execution.

(2) Traffic and system management functions.

(3) On-line table changes.

(4) On-line report generation.

Such software could, with little sacrifice, be written in
a higher level language. In many systems, these programs are
surged, meaning that some degree of inefficiency has already

been accepted. This category comprises some 30% to 40% of the
on-line programs.

1.3 Critical On-Line Software

This is software which may or may not have a high execution
probability or may or may not be statistically significant, but
which require a lot of timeliness when they are executed. Typ-
ical examples are:

(1) Emergency resources management (overflow).

(2) System recovery functions.

(3) Traffic recovery.

(4) Other emergency processing modes.

These must be treated as the high probability on-line soft-

ware. Perhaps 5% to 10% of the on-line software falls into this
category.

1.4 Critical Off-Line Software

This is a relatively small category. Off-line software,
with critical timeliness requirements, should probably have
been mechanized on-line.

1.5 Non-Critical Off-Line Software

This is a grab bag of off-line software not discussed else-
where. It can and should be programmed in a higher level

Vi-2




language.

1.6 Configuration Generation Software

There are two primary elements to this group: the configu-
rator and the table generator. The configurator establishes the
program parameter values for the particular site, given the
characteristics of the site hardware. It also performs routine
resource analysis to see to it that the site has what it re-
quires. The table generator is a form of a higher level langu-
age processor which takes the source table information and con-
verts it to the object tables. Both of these could and should
be mostly site independent and programmed in a higher level
language.

1.7 System Performance Monitor Software

Here, a distinction must be made between on-line perfor-
mance monitoring and performance monitoring under test conditions.
Sophisticated on-line performance monitoring cannot be done since
it tends to cut into the systems performance. That is, signifi-
cant artifact is introduced if the performance monitor consumes
more than a small percentage of the resources. On-line perfor-
mance monitors would tend to be thoroughly integrated into the
on-line high execution probability software. Therefore, it
would be written in machine language and it is programming tools
that matter.

Test condition performance monitor tools can be allowed
more artifact. However, since the programs being measured are
close to resources (in the sense that they manipulate and al-
locate resources) it is not likely that the uncertainty and
excessive processing introduced by a higher level language would
be tolerated. 1If the performance monitor tool is of a general
type (e.g., a trace), then, since it will be written only once,
the means by which it is constructed is not important.

1.8 System Analysis Tools

This category of programs need never be executed at the
site, either on or off-line. This software can be made com-
pletely independent and need never be rewritten. A higher level
language will suffice for such tools. Part of the problem has
been that such tools have not always been available, or have had
to be written from scratch for each application.

1.9 Software Development Tools

This is probably the most important category. All language
processors, traces, dumps, flowcharters, library utilities,
etc., are included in this area. Again, it is not how these

VI-3




programs are developed that matters, but the availability of
such programs in order to reduce the cost of developing the
operational and support software. This package is again appli-
cation independent and can be (but would not usually be) written
in a higher level language.

1.10 Summary

The first part of the grand strategy, then, that of
writing less software is directly applicable to the off-line
software, the support software, and the non-critical on-line
software, as well as the list of potential common routines.

The second part of the grand strategy, that of making
software easier to write, is applicable to the remainder and
the bulk of the on-line software.

2.0 SOFTWARE WRITING

2.1 General

Considering the entire software activity, from analysis to
coding, through testing, and maintenance, it is found that the
following strategies will contribute to making software easier
to write:

(1) Reduce source bugs.

(2) Find bugs faster.

(3) Localize the bugs when detected.

(4) Make inter-programmer communications easier.

(5) Make standards easier to define, follow, and enforce.

(6) Automatic analysis.

(7) Automate documentation.

(8) Automate test data generation.

(9) Automate test design.

(10) Automate testing.

(11) Make bugs easier to catch.

(12) Make it easier to patch.

(13) Reduce source bugs.

2.2 Available Tactics In Reducing Software Costs

The following tactics have been employed in the past to re-
duce software development costs. None of the items are wholly
new, but their interworking is. Furthermore, while these have
been around, they have not, generally, been available to the

VIi-4




-

designers of switching systems, who for the most part have had
to work in a programming environment that has not, until recently,
changed significantly from the days of CONUS AUTODIN.

2.2.1 Higher Level Languages

The usual way one starts off a discussion of the role of
higher level languages in communications, (or for that matter,
in any other specialized application area), is with a long dia-
tribe on why the existing 358 languages are not suited to the
task. Having done this, it is followed up with a specification
of desirable technical features, which is in turn followed by a
formal syntactic definition of the language. What we have at the
end, is language 359, which will be partially implemented on an
experimental basis, but which will be largely ignored by the very
community it was intended to serve. This will be blamed on the
recalcitrance of programmers in general, poor presentation of the
language at the local computer conference, and most important,
a bad implementation. A year later, another group, attacking
the same problem will make equally nasty comments about language
359 in order to justify the construction of language 360.

That's the way its been and there is no reason to believe
that this specification, (if it were to be done in the above
manner), would be singularly more successful. Why has it gone
this way in the past? It is, perhaps, that the wrong things have
been expected or that the wrong questions were asked. What should
be expected of a higher level language?

(1) Universality - its usage is widespread. It is an ac-
cepted language with lots of practitioners.

(2) The language lowers the programmer's training require-
ments, thereby increasing the base of available pro-
grammers.

(3) Simplifies the definition and manipulation of files.

(4) Simplifies the creation of reports.

(5) Simplifies the creation of algorithms and processes.

(6) Allows the construction of a library of structures.

(7) Takes care of other routine details.

(8) Checks source syntax errors - provides default values
for ambiguities in the source code.

(9) 1Is machine independent - transportable.

VI-5




T

While no one language has all of these features to the
desired degree, many languages do have most of these capabilities.
However, some languages are more suited to some areas than others.
The following list is instructive:

(1) COBOL - Report writing, file structures, universal,
tape and disc I/O.

(2) FORTRAN - Universal, machine independent, processing
and algorithm building, large library.

(3) MARK-1IV (Informatics proprietary program). Report
generator.

(4) CODASYL DDL/DML - Not yet implemented, excellent data
structure definition and management. Fancy file
manipulation.

(5) PL-1 - Probably the best all around compromise,
lacking only universality and acceptance.

What it comes down to, is that if the object code inef-
ficiencies of higher level languages are accepted, there is
probably more to be gained by using existing popular languages,
or modifications of them, than by attempting to promulgate a
specialized language whose usage will be even more restricted
than assembly language. Furthermore, it is probable that much
of what is gained out of a higher level language can be more
effectively obtained by other means - e.g., by a good assembler.
This is not to say that higher level languages have no place in
communications, but that the focus on higher level languages to
implement specialized functions may prevent the development of
other tools which could be more cost effective. It is, perhaps,
more advantageous to have these tools fully exploited first and
thereby gain more experience as to what might be desirable in a
higher level communication language, and also, to try using
existing languages for those functions to which they are suited.
Only then, if a new language is still required, go into its
construction.

2.2.2 Lower Level Languages

The assembler has been, for the most part, the orphan child
of the software package. Since most applications in a commercial
computer line are not programmed in assembly language, and since
most assembly language programmers are used to having it tough,
assemblers have changed but little since the days of AUTOCODER
(UNIVAC-1). The assembler is probably the most neglected tool
in the programmer's kit bag. In many cases, it lacks even the
most primitive diagnostic facilities. The crudity of the as-
sembler is probably a major contributor to the fact that assembly
language programming is difficult. The following is a list of

VI-6




features deemed desirable in an assembler for communication
language software. Most of the features are not new or unique
and most of the features have appeared in one or more assemblers.
Unfortunately, the entire package, or something like it, has not
always been available.

(1) Assembler controls.

(2) Cross reference lists and their closures.

(3) Data element definitions and labels.

(4) Independently assembled subroutines.

(5) Macro call and macro define capabilities.

(6) Local and global labels.

(7) Subroutine call and definition.

(8) Generator call and definition.

(9) Absolute, relative, and relocatable addressing.

(10) Common.

(11) Integration with other software packages.

(12) Protection and restrictions specifications.

2.2.3 Flow Charter

2.2.3.1 General

A flow charter is a program which uses a combination of
source program syntax analysis and cues provided by the programmer,
also as part of the source code and uses this information to pro-
duce a flow chart of the program. The flow charter is not infal-
lible and cannot represent everything that is coded, but for that
matter neither can a human flow charter. Flow charter programs
were originally produced primarily as an aid to documentation.

In many cases, flow charters have been abused by using them to
generate the only flow charts ever produced for the project.

That is, the code is used to generate the flow charts rather than
vice versa. The true purpose of the flow charter is to maintain
the flow charts current with the inevitable modifications of the
programs. Initial design flow charts are produced as usual.
These are replaced when coding is done, by the flow chart pro-
duced by the flowcharter. As program modifications are made, the
flow charter is re-run. It eliminates or reduces discrepancies
between the code and the flow charts, and equally important,
eliminates a discouraging period after the project is all over,
in which programmers must spend many hours updating the final
documentation.

2.2.3.2 General Facilities of Flow Charter

The flow charter considered for this software system is

VI-7




L]

a package which is wholly integrated with the assembler, and in
fact, may be considered to be part of it. It is also integrated
with the timing analyzer and the test organizer described below.

A one-for-one flow charter is useless. It requires too
much effort on the part of the programmer and gives him an overly
detailed representation. In all, he would rather examine the
source code than look at that kind of flow chart. Therefore, a
many-for-one flow charter is needed. There is a basic question
in the design of a flow charter - how smart should it be. In
higher level languages, because of the rigid syntax and stratifi-
cation of the language, it is possible to build reasonably smart
flow charters which require very little in the way of cues from
the programmer. However, in assembly language, in which indexed,
indirect operations, execute instructions, and other forms of
address modification can take place, it is impossible to guarantee
the development of the proper flow on the basis of the source
code alone. It is never really clear where a jump is going to,
and in fact, many of the processes as coded cannot be represented
directly in a flow chart form. Accordingly, the overwhelming
majority of the direction of the flow to the flow charter should
be given by the programmer. The following facilities are deemed
desirable.

(1) Two levels of flow charting specifiable - detailed
and general.

(2) Definition of processes that span more than one
instruction, or possibly jump instructions as well.

(3) Option to automatically include all macro, sub-
routine, and generator calls (one level only), or
to delete such calls and imbed them within a pro-~
cess, if desired.

(4) Insertion of all labels which are targets of jump
instructions,

(5) Ability to define and flow chart jump tables.
(6) Automatic generation of page connectors.

2.2.3.3 Integration with Other Packages

The flow charter outputs include diagnostic information
regarding the topology of the program not available from assem-
bler outputs alone. 1In addition, the flow charter can be used to
produce a representation of the program based on connected nodes
and spanning links - that is, a graph theoretic description of
the program. This output is extremely useful. It forms the
basis for automating a timing analysis model and is also the

VI-8



Y

T

basis for a model which will be used by the test data generation
package.

2.2.4 Structural Test Generator

2.2.4.1 Definition of Structural Test Generator

A distinction is made between two kinds of tests -
structural and functional. 1In a structural test, the emphasis
is on the program and its logic, but not on what it does in terms
of switching functions. 1In a functional test, the emphasis is
completely functional, and is independent of the way the program
has been implemented. While there is a degree of overlap between
these two, there are enough differences to warrant different ap-
proaches. Structural testing is that which is mostly done by the
programmers. Functional testing is that which is mostly done by
the end user - e.g., an acceptance test.

2.2.4.2 Definition of 100% Testing

The universal employment of 100% testing is advocated.
What this means is that every instruction in the program will
have been executed at least once, and that every conditional
branch will have been taken at least once in every possible
direction. Given the topological description of the program,
that is, its flow chart, obtaining a minimum sized 100% test is
a straight-fcrward task. The process begins at the program en-
trance and finds the shortest path to the exit. Any decisions
along the way are noted and data must be prepared that will con-
dition the decision so that the indicated path is taken. It then
starts again at the entrance and finds the next shortest path.
Some of the data on this path may coincide with data of the pre-
vious path, so that only that information required to condition
the decisions to the new path must be provided. The process is
continued in this manner, tracing paths and supplying conditioning
data and output information, until every instruction in the pro-
gram has been accounted for.

This is substantially the procedure used today in the
design of large scale real-time systems. However, in practice,
paths are missed, redundant testing is done and good records are
not kept.

2.2.4.3 Extent of Effort Required

It can be shown that testing comprises approximately
50% of the effort. Consider now two aspects of testing; setting
up the tests (phase 1) and executing the test, finding the bugs,
correcting them, and re-running the test (phase 2), It is found
that phase 1 comprises, in general, some 75% of the test effort,
while phase 2 requires 25% of the effort. The effort then,

VI-9




should be on the generation of the tests and not the execution
and removal of bugs.

2.2.4.4 Automation of Structural Testing

The topological model output produced as a by-product
of the flow charter contains all the information required to
trace and sensitize test paths. The process of extracting the
test data and the predicted results can be automated through an
interactive program. Setting up test run files and comparison
of output data can be automated completely. In addition, the
maintenance of the test data files, and the editing thereof re-
quire facilities already present in most commercial time-sharing
systems.

2.2.4.5 The Structural Test Package in Operation

The completion of assembly for a given unit and the
generation of the flow chart is the point at which the structural
test package can be invoked. The unit is examined to determine
all required precondition data. That is, that data which is con-
tained in the calling sequence or in common, which must be speci-
fied for the program to be run. The first sensitized path is
chosen and the flow chart comments associated with the decisions
on that path are printed out, along with a request to specify
the variable names for which values must be given. A check is
made to see if all unbounded variables have been bound. Values
for all inputs are requested and a file is constructed for the
input values. A request is made for names of output variables
and the values which are to be associated with the given test.
However, for the next test, a new file is created and only those
input values which have changed as a result of the new test path
are requested. Similarly, another output file is created. As
the test generation continues, less and less explicit inputs are
required since more and more parameters and values are carried
over from previous tests. When the entire set of paths have been
traced, the test specification phase has been finished.

The user can then call for an automatic run or can
direct the test system to a particular test. During an automatic
run, each test will be performed in sequence, using the appro-
priate data file. Any discrepancy between the supplied output
and the actual output will indicate a test failure and cause a
hold. The programmer can then either continue with the sequence,
rerun the test, obtain other outputs, edit the program, etc.
After a round of debugging, using trace facilities or whatever
is appropriate, the entire test sequence can be rerun. Simple
checks are made to see to it that the topology has not changed.
If it has, part of the test generation procedure must be redone.

VIi-10




2.2.4.6 Advantages

The primary advantage is a guarantee of 100% testing.
But, there are additional advantages which cannot be obtained
without such a package. Typically, today even when 100% testing
is used, after a bug is found, the entire test procedure is not
rerun from the top. While this can often be done with safety,
no small number of bugs remain which could have been caught had
the entire test been rerun. This is particularly the case with
the integration of several units, where it is too costly to go
back to the lower levels even though a change has been made in
the unit as a result of a detected interunit bug. Automation of
testing and test design will allow the complete rerun to be per-
formed. The net effect would be not only to substantially reduce
the effort required to perform the level of testing being done
today, but to significantly improve that level as well, at little
or no additional human cost.

2.2.5 Functional Test Package

2.2.5.1 General

The functional test package is used to generate the core
of a formal acceptance test. The point of view here, unlike that
of the structural test package which is internal (based on the
flow chart topology) and is heavily implementation dependent, the
functional test is external, functionally oriented, and for the
most part, is implementation independent. There is no single,
comprehensive package that can be used to generate the numerous
functional tests which comprise a complete system shakedown.
There are, however, a number of areas in which the labor content
of specifying and executing a comprehensive functional test can
be significantly reduced.

2.2.5.2 Scope of Functional Testing

Functional testing, as distinct from unit testing and
system testing, is epitomized when done by a formal acceptance
test. Acceptance test plans and their execution, for a typical
switching system require several man years of effort. A simple
commercial switching system test plan could be devised in less
than a man year. The total labor content (including vendor,
programmers, evaluators, reviews, etc.), for the design, review,
and execution of a formal acceptance test plan, for a large
scale military system, is of the order of 10 to 15 man years.
Often, this effort is so diffused among designers, evaluators,
installers, or carried as part of design or monitoring, that it
is difficult to pin the expenses down. In any case, it is a
large item worthy of some investment to reduce labor costs.

2.2.5.3 Component Elements

VI-11




2.2.5.3.1 Format Generator

No small part of message switch processing is con-
cerned with checking and converting formats. There are the ob-
vious header formats and routing indicator formats. However,
there are other formats that are not usually recognized as such,
but nevertheless require extensive programming. These include
operator commands, traffic service commands, table generator
input formats, retrieval requests and the like. Two cases must
be considered in setting up the test for formats - valid and in-
valid cases. The system must pass and properly execute action
on the receipt of valid messages and commands. Similarly, the
system must reject and/or correct or properly dispose of errored
formats. 1In all, the format tests (both valid and invalid) while
being the easiest part of the test to write, are the most labor-
ious and time-consuming. Almost half of the documentation and
the executed tests consist of format related tests.

A format generator, given the formal syntactic rules
that define a format, would generate character strings corre-
sponding to every valid format combination, and character strings
corresponding to the most likely invalid formats. Since the
invalid formats are infinite in number, only a restricted set can
be produced. Every single error should be generated. If the
format generator is available, it should be possible to go on to
the analysis of error pairs within the same format.

Most of these same arguments and comments hold for
classmark generation and checking in circuit switching systems.
For this reason, a classmark generator is recommended as well.

2.2.5.3.2 Traffic Generator

There are three generic conditions or kinds of traffic
which must be generated in a test; test traffic, background
traffic, and load.

Test traffic is used to test specific capabilities of
the system. In general, test traffic is peculiar to the system
and must be hand-crafted. It is a lot of traffic, but since the
bulk of the effort is deciding what traffic is to be run, the
opportunities for automation are minimal.

Background traffic is traffic which is kept running
throughout the test. The intent of background traffic is to show
that the system performs its functions while simultaneously run-
ning a background of representative traffic. This is not a dif-
ficult set of traffic to devise and would not benefit signifi-
cantly from automation.

Load traffic is used to deliberately attempt to break
the system down: or, at least, to test the system's defenses

Vi-12




against higher than design loads. In general, this is a large
amount of representative traffic, which should and could be auto-
mated. Running the same message or set of calls through is not
safe. Each message or call must be self-identifying and unique:
otherwise, lost traffic, garbled traffic, and the like will not
be readily identified. The significant identifying data is
usually carried in the text of the message or in the distinction
of the call. The load traffic generator would produce coded
sources of traffic in the desired quantities, in a form suitable
for introduction into the switch.

2.2.5.3.3 Traffic Simulator

Much of the system cannot be tested without a simulator
that is used to present valid and errored traffic to the system.
Consider the problem of testing a channel coordination procedure.
A pair of lines are cross-patched and traffic is introduced, say
from a retrieval file or an intercept file. The message goes
through properly, supposedly proving the validity of the pro-
cedure. All that this has proved is that the right hand of the
procedure knew what the left hand of the procedure was doing.

It does not prove the validity of the procedure, only its self-
consistency.

As a step up in proving a channel coordination pro-
cedure, live testing might be used with an already proven user
of that procedure. The messages go out in both directions and
are received without error. We have proven the normal path of
the procedure, but not the tougher and far larger set of error
condition paths. To test these, errored traffic or errored re-
sponses must be simulated to the procedure. Since the other side
of the interface is that of a working system, forcing it to
create errored responses will require a patch - something that
the operators of a working system are highly reluctant to do. A
traffic simulator could do this job.

The problem of providing a proper load to a switching
system has also always been a problem. Most often it has been
done by some kind of cross-patching or loop-patching of inputs
into outputs. While this creates a load, it is unrealistic.

The load tends to be synchronized; this is a statistically harsh
situation which often requires program patches to correct (de-
creasing the reality of the test). Input and output cannot be
balanced as in a real situation, or else overflow will guickly
result. Errored traffic cannot be sent or created.

For these reasons, a traffic simulator can be an ef-
fective tool in performing system functional testing. The simu-
lator does not require additional or different hardware. It can
typically be run in a minimal configuration of the same hardware
being used to implement the switch. The simulator does not re-
quire the same elaborate accountability and protection features.

VI-13




Furthermore, recovery from hardware faults is not necessary. The
simulator, then becomes a software package to be implemented
using the switching hardware.

2.2,5.3.4 Test Administration Package

No small part of the effort involved in producing a
comprehensive, formal acceptance test, is the generation of a
formal acceptance test plan. The test plan contains the complete
documentation of the tests, indicating the nature of the test, a
narrative description thereof, a complete specification of input
traffic, operator actions, scenario components, etc., and a com-
plete specification of every aspect of the system's behavior in
response to the test, expected outputs, etc., Also included in
the test plan are various message cross reference indexes, line
indexes, test tables, call tables, etc. In all, the test plan
document is of the order of 1500 to 3000 pages of text. Ap-
proximately 30% of the total manpower involved in creating this
test is the administration and correction of the test plan docu-
ment. Long before the formal test has been run, the test plan
has been executed, piece by piece, in a series of dry runs. The
test plan is as complex as any piece of software and must also
be debugged. Most of the bugs that will be caught through the
formal running of the test are caught as a result of designing
the test and dry-running it. Errors fall into the following
categories:

(1) Errors in the specification. The specification
will be corrected, the programs changed, and
the acceptance test plan modified.

(2) Errors and doctrinal misunderstandings in the
operation of the system. The manuals will be
clarified, the test plan narratives will be ex-
panded.

(3) Program bugs. The bugs will be corrected, the
test plan may be modified as a result.

(4) Test plan errors of understanding. That is,
testing of a non-existent feature. The test
plan will be modified.

(5) Doctrinal errors in the execution of the test
plan. Test plan documentation will be revised.

(6) Test table bugs. Test tables will be modified,
test plan documentation will be modified.

It is found that the test plan documentation is sub-

ject to as much, if not more, modification than is the system
documentation. If that documentation were maintained on-line

Vi-14




and could be edited by the originator of the change, much as pro-
grams are edited under the general documentation package (see
below), a considerable amount of man power could be saved.

2.2.6 Model Builder Package

2.2.6.1 General

The continual development of new computer controlled
communication systems, and the continual enhancement of existing
systems implies, in addition to new code, new analyses of per-
formance. This is an ongoing activity which is usually thoroughly
integrated with the design and development activity. Comprehen-
sive models of systems have not generally been done in the past.
When done, they have generally been done from scratch for each
new project, independent of the analytical effort that may have
taken place on a similar or almost identical system based on the
same machine. The problem is the same for the analytical area
as it is for the software area. That is, the same barriers that
exist to common software are operative in preventing common
analytical efforts. Given modular software and given a solution
to the software commonality problem, the possibility of common
analysis emerges.

The thrust of the analytical approach proposed here, is
to eliminate the bulk of it by creating a model building and
maintenance facility, which is totally integrated into the soft-
ware development activity so that common software will automati-
cally result in common models for that software.

2.2.6.2 Use of the Model

An analytical model, if sufficiently comprehensive, is
an indispensible management tool for deploying multiple systems
based on the same hardware and software. Assume that a hardware/
software package of the proper type has been created and the
relatively mundane problem of doing site surveys and implementa-
tion of, say, a hundred sites must be performed. No two sites
are alike. The traffic picture is different, the line structure
is different, and the mix of operational requirements differ,
even if the software is identical. Furthermore, it is not likely
that all special features will be eliminated by fiat - it can be
expected that certain minor differences from site to site, or
from user agency to user agency, will exist,

The analytical problem to be faced is that of deter-
mining what resources are required to handle the traffic at each
of a hundred sites. That is, how much core, how much mass
memory, what channels, devices, etc.- It is desirable to obtain
a working configuration which neither over-buys nor is exces-
sively restricted in terms of future growth. A typical analysis
of the type required entails an effort of some two man years.

VIi-15




The individuals involved must be thoroughly familiar with the
details of the hardware, the software and the application: 1in
short, they must have been part of the original design team.
This is the way it is done traditionally.

It is totally unrealistic to assume that it will be
possible to obtain and maintain a staff sufficient to the purpose.
Analytical automation is essential. That automation is most
readily provided in the form of a comprehensive mathematical
model, or rather, a library of model components which can be
integrated, optimized, etc., before deployment so as to obtain
an effectual system. This is the predominant use of the mathe-
matical model.

The secondary use of the model is in the management of
individual sites to determine the best way in which to meet the
predicted or actual traffic growth. The traffic processed by the
operational site is usually significantly different from the
traffic predicted for it. Furthermore, as the system is used in
the field, the original traffic predictions are seen to become
less and less realistic. The site manager must also be able to
plan his resource expansion requirements. The analytical talent
and know how is not available to him, except through the use of
a centrally administered comprehensive mathematical model facil-
ity. It is expected that each site will update its traffic pro-
jections at least on a semi-annual basis, and to obtain the re-
source requirements projections that often. Again, this would
represent an incomprehensible burden if not automated.

The third use of the comprehensive model is in the de-
velopment phase be it the original development or a subsequent
enhancement. .ts use is no less critical there - in fact it is
there that the basic decisions on system behavior are made - if
those decisions are wrong, or if a trade-off has been overlooked,
or bypassed because it was too complex to evaluate manually, the
resulting systems may all be operating at less than potential
efficiency. An integrated, comprehensive mathematical model is
an indispensible aid to development.

The final use of the comprehensive model is the role it
can play in high level planning for a network or a communication
agency. Changes in formats, changes in traffic patterns, changes
in the scenarios for which the system was built, testing of hypo-
thetical scenarios as a part of a larger scale military planning
exercise, are all reflected in changes in the traffic and load
which the systems will have to handle. While it is not practical
to include a detailed mathematical model of a communications
computer complex in a network model or in a higher level model,
such as a war-games model, the mathematical model of the switch
can be used to develop a summary behavorial mathematical model
which could be incorporated into a larger scale model or simula-
tion.

VI-16




2.2.6.3 Building the Model

It is not the building of the overall model that is the
problem but the modeling of its component parts. Most of the
analytical effort involved in constructing a proper mathematical
model can be automated and completely integrated into the design
process. The primary tool for this is seen as an extension of
the assembler/flow charter/test generator, resulting in a new
package, the assembler/flow charter/test generator/model builder.

The topological outputs of the flow charter, when coupled
with the information retained in the structural test generator,
are the outputs required to construct a mathematical model of
every subroutine, subprogram, etc., in the system. The assembly
code allows precise timings to be made automatically. A special-
ized software program could be used to provide a complete alge-
braic model of any subroutine or program, automatically and
without human intervention. Such a model would be an algebraic
expression in the probabilities associated with the various
decisions. These would be the components with which the mathe-
matical models for the site would be constructed. The same kind
of facilities that would be used to assemble the component sub-
routines into a working software package would, in parallel, be
able to assemble the component algebraic models into a complete
algebraic model of the system. An interactive system, such as
GASM (see Volume III), expanded somewhat, and run in a non-
interpretative mode, could be used to particularize the algebraic
models. Human inputs would still be required for some of the
probabilities, specification of traffic, etc. However, there
are no fundamental problems in the creation of a model builder
facility or the subsequent creation of particular models using
that facility.

An expanded model manipulator performing the same kinds
of things done by GASM does not represent any significant expan-
sion.

The tie between the assembler/flow charter/test generator
and the specialized software does not represent fundamental prob-
lems. Similarly, the tie between the specialized algebraic pro-
gram and GASM is straightforward. 1t should also be pointed out
that the algorithms reauired to find the shortest paths, etc.,
for the test generator would be part and parcel of the special-
ized program.

2.2.7 Target Machine Simulator

2.2.7.1 Reason for a Simulator

There are many advantages to doing initial testing,
particularly at the unit level in a simulator of the target
machine, rather than in a real target machine. A simulator can

VI-17

v




be integrated with performance monitoring and measurement software
without introducing artifact. A simulator, running interpreta-
tively, allows elaborate traces and traps to be implemented, which
can be cumbersome or misleading in a real system. Most important,
a simulator of the target machine is stratified in that one can
operate at the simulation level with the assurance that there is
no possible bug which will work in such a way as to deny the pro-
grammer the use of the debugging tools. In a real system, on the
other hand, a bug could clobber the trace package, for example,
making the finding of the bug difficult. The final and probably
most important advantage of the simulator is that it can be
incorporated into a time-sharing system, allowing multiple users
to test programs simultaneously without fear of interaction.

2.2.7.2 Use of the Simulator

The simulator would be used for all initial assemblies
and unit testing. If the simulator is large enough to incorporate
the characteristics of the various peripheral devices, then
testing could be done under simulation, up to the integration
of a complete system. This would be very desirable. Successful
running in the simulated mode does not guarantee that the system
will run properly on the real test machine or the target machine.
However, if it does not run successfully and pass all tests on
the simulator, then it will surely not run on the real thing.

The simulator would also be used in conjunction with
testing on the real system. 1In fact, a simulator access console
would be available to the programmer right next to the real
systems console during debugging. Assume that a bug has been
detected. It is much easier to establish the conditions that led
to the bug, to probe the cause, and to test possible fixes on
a simulator, or with a simulator along side. For example, the
act of probing on the real system can cause interference with
the situation that exists in the real system; e.g., the bug is
such that it affects or is affected or masked by the introduction
of a trace or dump program. It would be easier to simulate the
effects of the bug on the simulator where things can be tried
over and over again without information loss, prior to doing the
same thing on the real system.

2.2.8 Configuration Generator/Specifier

The configuration generator's primary function is to esta-
blish the values of assembly time parameters and tuning parameters
required to particularize the system to the specified site. It
is a SYSGEN package and, in principle, not new. This kind of
package, which reduces much of the effort required to particu-
larize a program to a site is most often done as an add-hoc thing,
rarely designed from the ground up, and often totally lacking.
There are many instances in which the particularization of the
program parameters to a given site has been done by hand,

VIi-18




resulting in a whole new set of bugs. While mechanical configur-
ation generation will not eliminate all manual operations, it
will, at least, assure that the particularization is complete

and consistent.

The configuration generator is also needed on site. It
must be used every time there has been a hardware change. It
would also be used for line configuration changes and tuning
parameter value changes that are required to best match the system
to the traffic.

2.2.9 Table Generator

Switching systems, when properly designed, are table
driven to the maximum feasible extent. The source tables may
require from 20,000 to 300,000 statements. Every bit of the
permanent tables must be specified. These include line para-
meter tables, classmark tables, routing tables, special delivery
instructions, security data, priority information, accountability,
and a host of internal parameter values. In some more advanced
systems, table driven channel coordination procedures, table
driven routing procedures, as well as other table driven func-
tions are found, which are normally done in code.

The setting up and testing of the tables is no small part
of the programming effort, though not usually done by the soft-
ware developer. Most often, it is done by the user organization
in conjunction with the software developer. In any event, speci-
fying the tables is a programming activity. As an example of
the extremes to which this can go, it is estimated that the labor
required to set up the tables for the IBM-PARS reservation system
is of the order of 40 man years. An expenditure of three to four
man years for setting up the tables of a large switch is not un-
usual.

What is unusual is that we ask the table programmers to do
the job in octal, or binary, or a haphazard mixture of octal, hex,
binary, and ASCII. If lucky, the system will be provided with
a table generator language comparable in terms of facilities
such as listings and diagnostics to a relatively primitive as-
sembler. Furthermore, the table generator source code, when a
language has been devised, is unique to that system and bears no
relation to any other system or the method used to introduce the
tables. This is an abominable state of affairs.

Much of the source code of the tables could be made machine
independent and be executed in a higher level source language
without penalty at the object level. The tables should not be
treated as if they are data, but should be treated for the code
that they indeed are. What is needed then, is to define and
develop a higher level table specification language with suf-
ficient freedom to define the tables in the first place, and to

VIi-19




specify the input formats where special formats must be devised.

The intention is to create a source language that would
take care of the routine kind of things in a standard, site in-
dependent manner. The ability to do this would significantly
reduce training costs for site personnel.

3.0 A NEW MODEL TOOL KIT FOR PROGRAM DEVELOPMENT

3.1 Software Perspective

If a truly homogeneous family of communications systems is
desired, based as much as possible on common software, and a
common architecture that is to be used over a wide range of appli-
cations, it is clear that a comprehensive support and development
software package will have to be developed that is no smaller
in scope to the kinds of software libraries developed for a com-
mercial family of machines. By no means should this be inter-
preted to mean that a commercial software package is what is
needed. If the above allegation is accepted, and the intention
to reduce the total life-cycle cost of software development and
maintenance to be associated with the CPS is pursued, it will be
found tha. the basic software package, excluding the so-called
application packages, exceed the engineering effort required for
the hardware development. This should not be surprising since
this has always been the case for commercial systems of compar-
able complexity.

Recognize that software costs are increasing, that engi-
neering costs are continually being moved from hardware areas to
software areas and, with it, basic software costs will similarly
increase to overtake initial hardware engineering costs. While
software costs cannot be eliminated, there is ample room for the
significant reduction in labor content ' . ough the constyruction
of modular software, the automation of many elements of program
development, and through the provision of facilities comparable
in scope, but specific to the CPS needs, that have long been
enjoyed by the commercial programmer, Real-time systems pro-
gramming may be difficult, but there is no need to make it any
more so than it has to be.

3.2 General Features of a Comprehensive Software Development
Operating System (COMSDOS)

Having seen the range of packages and software elements that
exist or should be developed in support of a complete communica-
tion system design and operations activity, it is obvious that
the integration and interworking of such a package requires some-
thing like an operating system. Furthermore, it is seen that
much emphasis has been placed on doing things on-line via remote
terminals. In other words, the operating system in question is
a time-sharing operating system.

VIi-20




Such a system would have many of the features commonly found
in a commercial time-sharing system. It would differ primarily
in the fact that there would be a closer integration of the
various component packages, elimination of much of the clumsiness
now required to go from package to package, and the inclusion of
a number of specialized file structures suitable to the restricted
purposes of the software development effort.

Exactly what facilities are required, how they should be
best integrated, how they should interface with the programmer,
how they should be implemented, on what machine, etc., cannot be
answered now. Experience has shown that many of the important
requirements are recognized only after people start to use the
system, by which time it is too late to go back and change things.
A valid approach to solving this problem would be to build an
initial version (admitedly inefficient) over an existing time-
sharing operating system, such as that of the DEC PDP-10 or the
HIS-6050. A test bed could be devised within which the efficiency
of various approaches to communication system software develop-
ment could be examined. Successful operation of the test system
for a few projects would identify what features the dedicated
COMSDOS should have. Many of the component elements could be
constructed and evaluated on existing time-sharing systems as
applied to any large scale real-time software development effort,.
This could be done without prejudice long before the CPS and its
software package became available.

3.3 Component Elements

(1) Assembler, new model

(2) Flow charter

(3) Structural test generator
(4) Functional test package:

Format generator
Classmark generator
Traffic generator
Table generator
Traffic simulator

Test administration package

(5) Model builder/analyzer
(6) Target machine simulator

(7) Utility package

Dumps

Vi-21




N

Converters
Traces
Editors
Test point

Loaders

(9) Performance monitors

(10) Hardware diagnostics

And an operating system/file management system that puts the
whole thing on-line in an integrated manner so that it is reason-
ably easy to use.

3.4 Pre-Requisites

{!) Stable hardware

(2) Willingness to accept performance or functional compro-
mises in the interest of reducing software costs.

(3) Funding of modular software as an effort of its own -
rather than expecting it to come into being as a fall-
out of a specific project.

(4) A large number of configurations of comparable types
over which the modular software and the software
building tools can be amortized.

(5) Planning and construction of the entire package as a
self-consistent entity rather than following the clas-
sical historical piece constructions of the past.

3.5 Conclusions

Software costs can be significantly reduced given stable
hardware by increasing the amount of modular software, This
implies an acknowledgement of the fact that modular software can-
not be developed within the ccontext of any one system but must
be funded as a separate project whose objective is to create
modular software to be used on all projects.

Software costs can be significantly decreased by taking as-
sembly language programming out of the dark ages by providing
reasonable tools, which have, for the most part, been denied to
the assembler programmer.

VI-22




3.6 Recommendations

(1)

(2)

(3)

Establish a study to consider, in further detail, what
the mix of software development tools should be. The
objective would be to provide sufficient detail to
allow an implementation on a trial basis.

Implement the major elements of the programming tool
kit as interpretative programs on a time-sharing system
and test it in use in the development of a small, but
representative communication system. Revise the speci-
fications for the final package in the light of what
has been learned. This should be done in parallel with
the CPS hardware studies so that time is not lost.

a. Consideration should be given to implementing por-
tions of the package which are theoretically feas-
ible, relatively independent of the entire package,
but which still require operational testing.

Integration of the package and rewriting thereof for
implementation in the CPS computer for a CPS software
effort - e.g., creation of the basic modular software
to be used in the CPS based system.

V1i-23




4.0 SYSTEM GENERATION

The capability to identify, select, and configure Circuit
Switch and Message Switch software across varied physical and
functional arrangements was investigated. Recognition of the
desirability and usefulness is easily obtained, but can instantly
be matched by awareness of the complexity of such an undertaking.

It was, therefore, the intent of this investigation to un-
cover and itemize basic criteria which would have to be addressed
during such an endeavor. An attempt is made to uncover the
salient problems which would be encountered, and to arrive at
some corresponding solutions. Detailed implementation character-
istics and practices are left to the planning and construction
phase of the System Generation facility.

While the purpose of this investigation is directly related
to the construction of Circuit and Message Switching systems, it
is not envisaged that the concepts presented here preclude their
use elsewhere. This premise is made based upon the assumption
that many large systems are constructed in a manner similar to
the systems in question, and that they possess the same require-
ments for reconfiguration of their parts to provide a working
subset.

It will be beneficial at this point, if a brief definition
is given for System Generation, as it is used here.

The concept of System Generation classically applies to the
software system only. It is considered to be a tool with which
preformed software programs, each of which address small sec-
tions of switching logic, are selected and grouped together to
provide the total software needed for a particular switching
environment. Specifications for that environment are presented
to the System Generation facility, which in turn, accesses soft-
ware programs which will satisfy the stated objective. The
resultant delivery then, is a system program, contained on some
media (tape, disc, etc.), which can be loaded into the target
machine and operated.

An extension of this definition introduces the hardware
modules into the process. This extension is made in order to
accommodate various hardware system configurations which could
be applied in the solution of a given switching requirement.

The System Generation concept presupposes certain system
characteristics, among which are:

(1) The software constructed is modularly oriented such

that individual programs can be logically and physi-
cally grouped.

Vi-24




(2) Functions to be performed can be explicitly stated.

(3) Coorelation between functional requirements and pro-
gram module(s) can be developed and maintained.

(4) Equipment configurations encompass the entire spectrum
of resources which need to be applied for any configur-
ation demanded.

Although System Generation, in this context, does not con-

sider the system data associated with all switching systems, it
is a matter of importance and requires special study.

VI-25




4.1 SOFTWARE DESIGN

Prime importance must be placed upon the software developed
for use in a System Generation procedure, so that it is suitably
constructed. This is no small feat. At the onset of the soft-
ware development, expected results must be outlined with achiev-
able goals in order to meet the intended result. Otherwise, the
software modules which functionally constitute the individual
components will not necessarily be developed to insure their
unique callout and concatenation capabilities with other module
members.

An example can serve to illustrate the point. Assume that
one of the goals to be accomplished is the construction of a
series of software modules which provide "front-end'" supervision
processing for the main body of the call process work. Regard-
ing a circuit switch application, therefore, several kinds of
capabilities would need to be built into the software scanning
logic. These would include all possible termination types ex-
pected in the system, frequency rates which need to be main-
tained, signal validation procedures per type, error detection
requirements, data delivery to intermediate processing modules,
and program interface criteria between the scanning logic and
other system modules.

Given that all of the above conditions and implementation
details can be provided, a problem can still evolve which pre-
vents the desired result. For instance, one can imagine that
the software designer develops the scanning logic to include all
functional capabilities as one large program. They are, there-
fore, integrated together in such a manner that the entire pro-
gram must be used to exercise the capabilities for only a
selected set of termination types. This defeats the intended
result of the process.

It would seem logical that the scanning logic should there-
fore be parsed into small modules, each of whici piovide, say,
process logic for one kind of terminal specifieu. 7These modules
would then possess the capability of being linked together to
comprise the desired scanning logic. Unnecessary modules would
be omitted. The System Generation personnel w_uid then need to
specifiy each kind of terminal to be dealt with, timing charac-
teristics and numbers of each such terminations.

The following sections deal with critical areas which must

be considered during the entire software development process,
leading towards a comprehensive System Generation facility.

VIi-26




4.1.1 Software Development Languages

The use of language here is concerned with the develop-
ment tools available for application software, rather than
specialized languages which assist in the System Generation
function itself.

To the extent that languages play any role in the pro-
cess, and are not themselves transparent, requires some investi-
gation into the constructs of the resultant machine code. This
is necessary only if more than one language is used, and in
particular if the programs generated are independently produced.

It may serve a useful purpose in exploring why this
would be attempted; that is, why would one choose to develop
various portions of the applications software using different
languages. The answer is dependent upon the kinds of languages
made available for the processor, and the kinds of tasks which
the operating software will be attempting to do.

It can be imagined that a switching language, peculiar to
the application tasks is available. It may also be imagined
that other languages, tailored to other specific tasks and opti-
mized for those tasks is available. These might include a data
base manipulation language, a statistical language which re-
trieves system data and massages it in some manner, and an
expanded assembler used for special coding requirements. All of
these language tools might be made available to the software
designer to effectively and efficiently perform his task.

Given the diverse languages which could therefore be
available, it is important to consider the interrelationship of
the resulting code produced among the systems. It is expected
that the definition and access of data items in all languages
would be compatible. This is of concern since a logical rela-
tion between the languages should exist at least at the data
level. However, it may not be convenient to retain consistency
of data specifications among the languages used. A problem in
interfacing programs generated from different languages could
then result.

An example can illustrate the point. Assume that the
application program is written in a high level language format.
The data used and processed would then be defined at a high
level also. Certain conventions and restrictions would than be
followed in using the data. Assume also that a special language
is developed for the data reduction of the information acquired
by the application programs. This language might be statisti-
cally oriented, requiring data items and fields to follow some
specific format conventions. These conventions may not neces-
sarily coincide with the conventions required by the application
program processes.

VIi-27




The System Generation procedure would have to take incom-
patible data field conventions into account when programs gen-
erated from both language systems are combined. It is logical
to assume that this should be handled by some automated process,
transparent to the user of the System Generation procedure. One
such automated process could be the envoking of a data trans-
formation routine, which prepares the information for processing
prior to the actual processing activity.

It is also possible to imagine the interfacing of pro-
grams generated by diverse languages at the code level. Programs
interfacing would, therefore, take place by transferring control
from one program to another through some calling sequence. Here
again, the conventions developed may be inconsistent between the
languages, perhaps in the parameter handling area. It would
seem logical then, to provide for these inconsistencies within
the System Generation procedure as was suggested earlier. In
this case, however, it might be better to adjust the parameter
handling process of one of the languages in question, rather than
to introduce data transformation procedures which necessitate
gross expenditures of time and core.

The solution to these kinds of situations would have to
be addressed during the design of the System Generation soft-
ware, taking into account the idiosyncrasies of the languages
which support the applications software.

VIi-28




4.1.2 Program Modularity

It will be of great importance in provisioning for the
System Generation eventuality that the programs be composed of
small pieces of logic which can be grouped together to form a
specifiable system function. Otherwise, tailored software con-
figurations cannot be created, which is the intent of the exer-
cise.

The modules of software should then reflect some criteria
by which they can be judged in meeting the objective. It may be
difficult in defining such module constraints, to accommodate
all possible implementations, without imposing severe limita-
tions on the design. However, the result is worth achieving and
should therefore be pursued.

Fortunately, a design technique has evolved which pur-
ports to encompass the attributes which are necessary for modu-
larized software. This concept is included in what is known as
"Structured Programming''. A section of this report deals with
the details of this approach. It is sufficient now only to
point out that a method does exist, and can be used to support
the System Generation objective.

Of major concern then, is to define the level of modular-
ity with which systems should be produced. It is difficult to
imagine a truly effective System Generation procedure which has
imposed upon it program modules which were designed independent
of any such considerations. The result would be, when con-
sidering historical software generation techniques, a group of
very large program modules, each of which provide many special
system functions intertwined in a manner which disallowed their
segmentation. At best, it could be expected that these large
modules would have built into them software '"switches' which en-
abled or disabled certain sections or features. But the total
code would need to be carried into any system which required
even a small portion of the module logic.

The idea will be to parse the software functional require-
ments into a group of smaller functions. These smaller functions
may in turn be parsed into several functions themselves, etc.

Depending upon the overall size and top level structure
of the software system, the parsing activity may evolve into a
myriad of very small routines and subroutines. These small
modules will contain only a fraction of any particular function
which the system specification demands. However, the modules
are small and manageable, which was one of the results to be
achieved.

The following remarks must be prefaced with a definition
of functional software and program organization.

VIi-29




When viewing a major software implementation, ic( is neces-
sary to consider the functions which the system is expected to
perform. This is because software has been designed to perform
efficiently these desired functions with respect to both time
and memory utilization. Therefore, in a Circuit Switch system,
single streams of logic to encompass each type of call place-
ment (seven digit local, seven digit extended area service, two
digit abbreviated dialing, etc.), are not found. Rather, the
software would be constructed in many major pieces, each of
which provides some portion of many call types such as a portion
which handles supervision signaling, another which handles route
translation, another which handles digit collection, etc. In
this manner, both execution efficiency and minimal memory utili-
zation is achieved.

This organization leads to the understanding that these
programs are composed of many small functions, each of which
contributes to some portion of one or more system functions.
Because of this, some of the modules will be interrelated and
dependent upon one another, while others will not.

Returning now to the main topic. In viewing any partic-
program the question can be asked, how is it known which modules
need to be grouped together to form any one of the functions
which the System Generation personnel may call out? A partic-
ular function may need to consist of from ten to one hundred of
these small modules.

Two solutions come to mind. There undoubtedly are others.

First, the identity of each function which the system was
capable of handling would be defined. This information is avail-
able since the software system was based upon known functions
prior to the parsing activity. Then the identity of each module
which assisted in providing the specified function would be de-
fined, pulling them all together physically, so that each func-
tion was uniquely grouped. Each module still maintains its own
separate identity, although it is physically grouped with others.

This may turn out to be the most viable approach. There
are some drawbacks, however, the most serious of which is module
redundancy. As each function was being identified as requiring
several modules grouped together, these modules were separately
lifted and placed with other modules to form the whole function.
Each function of the system followed the same practice, indepen-
dent of one another. It may evolve that the same module was
lifted several times to form a part of several functions. This
means that the same logic, if all functions are required for
some configuration, could exist in memory many times over.

This is not necessarily a poor practice. The extent of
these occurrences would have to be analyzed in conjunction with

VI-30




available memory space to properly judge the concept.

There is another alternative. It would be possible during
the correlation between functions and modules, to '"mark' each
module for inclusion into each function that it serves. No
physical configuration would occur during this process. Rather,
a function identifier mark would be included with each module as
an information adapter. This information could then be used
during the system generation process to envoke each module as it
is required. But the module would be envoked only once per
system configuration, so that multiple copies of identical logic
would not be retained in memory.

To name one drawback to this approach, it can readily be
seen that module re-entrant capability might have to be intro-
duced, in which case, more complicated software would result.
This is not necessarily the case, however, since the structure
of the software should dictate whether this need exists. With a
thorough knowledge of the system cperation, particularly in
scheduling criteria, it might not be required to develop re-
entrant routines. In any event, these kinds of capabilities
should rightly be addressed in programming conventions and not
here.

VIi-31




4.1.3 Linking Arrangements

In historical perspective, linking of programs is per-
formed by a system loader, which operates on the target machine.
The loader has the capability to group individual programs to-
gether and provide for their interrelationships. This require-
ment may still be required to some degree as it typically exists
today. However, it is felt that much of this activity is re-
quired within the System Generation process itself, and to a
much lesser extent on the system processor. Relocation pro-
cesses of course, may still be preferable at system load time.

The linking process will have to concern itself with some
module acquisition method. It may turn out that this task is
one of the larger efforts in the construction of the System
Generation procedure. Some of the subtasks which can be en-
visaged are:

(1) Identification of all modules within the system.

(2) Correlation of system functional requirements with
individual module elements.

(3) Development of definitive procedures by which the
modules are grouped together.

The above three subtasks are highlighted because of their
expected major importance. There are undoubtedly others which
deserve attention. A discussion of the identified tasks follows.

4.1.3.1 Identification

For a very large Message Switch or Circuit Switch, the
number of modules will total a thousand or more. If the defini-
tion of a module is extracted from the structured programming
method, then a physical limitation is placed upon a module which
prevents its size from exceeding one printed output page of a
program listing. Circuit Switch programs in the medium to large
size, are currently within the 1000 to 3000 page printout range.
These are primarily assembly language oriented. Message Switches
produce even more code, again at the assembly level, when all
off-1line software is introduced.

It can readily be seen that the identification of modules
will be no small effort. Some technique could be developed
which automated this identification process. This would not be
required, except that for very large systems the manual labor
required could be excessive. The concept is important, however,
and not the implementation criteria at this point. What is
needed then is some unique identifier which can be associated
with each module.

VIi-32




———

The next area which needs identification consideration re-
gards the collection of modules which are dependent upon one
another. This is not system functional dependency, but rather
logical dependency among functions which have been segmented to
accommodate rules inherent in Structured Programming.

An example will best serve this definition. Suppose that
as part of some process, a need exists to provide a data trans-
formation from ASCII to one of several code formats, and that
according to our knowledge of the system, it is expected that
only a subset of these transforms need to be accommodated on any
given system. As a software designer, parsing of the logic into
several different logical and physical segments would be per-
formed. For instance, a routine to convert from ASCII to binary,
a routine for ASCII to BCD, and a routine for ASCII to hexi-
decimal. A tree structure would then be developed as illu-
strated below.

ASCII CODE

CONVERSION

CONTROL
ASCII ASCII ASCI1I
TO TO TO
BINARY BCD HEX.

This ASCII code conversion block contains control logic
which ascertains, according to some input it receives, to which
transformation module control should be directed. The designer
would then have to indicate that each of the three transforma-
tion modules required the conversion control module for its
operation. Therefore, there would be specified three distinct
groups of transformation schemes which could be selected.

VI-33




N o

In this context, two additional points can be made. The
conversion control module would carry with it a name which was
common to all three transformation schemes. The logic of sel-
ected modules would be built in such a manner to recognize
multiple requests for the control module, and insert that module
only once. Of course, the capability should exist which dis-
abled this multiple selection and allowed redundant copies of the
control module to exist. This is warranted on some occasions
and a means to allow such duplication should be provided.

The identification of the modules within the system is im-
portant since they will be used to organize the software. The
code conversation example would then be modularly identified as
depicted below.

60

ASCII CODE

CONVERSION

CONTROL

61 62 63

ASCII ASCII ASCII
TO TO TO
BINARY BCD HEX.

The c¢cormbinations of conversions can be described as:

ASCII to Binary = 60, 61
ASCITI to BCD = 60, 62
ASCII to Hex. = 60, 63

Further refinement of module identification will be dis-
cussed in paragraph 4.1.3.3.3.

The second point is that some procedure would have to be
developed which recognized, in the control module itself, re-
quests for any conversion types which had not been specified.
It would theoretically be possible for the control module to
receive an input to transform ASCII to BCD, but the BCD module
had not been specified. This would be an error condition which

VI-34




should not cause catastrophic situations to occur, if that event
took place.

The third and final area which requires identification re-
gards the system functions to support any possible capability
which the system was intended to handle. This information
will usually be contained within the system specification. The
individual capabilities will have to be uniquely recorded, so
that they may be envoked individually. For instance, a list for
conferencing capabilities of a Circuit Switch would contain:

1.0 CONFERENCE
1.1 BROADCAST

1.1.1 Pre-emptable
1.1.2 Non-Pre-emptable

1.2 PROGRESSIVE

1.2.1 Pre-emptable
1.2.2 Non-pre-emptable

1.3 PRE-SET

1.3.1 Pre-emptable
1.3.2 Non-pre-emptable
1.4 MEET-ME

1.4.1 Pre-emptable
1.4.2 Non-pre-emptable

Each feature and capability contained within the system
would have to be covered in detail similar to that outlined
above.

4.1.3.2 Correlation

The next sequential process which would occur concerns the
relationship between system capabilities and module utilization.
The system designer will have cognizance of these relationships,
and can logically be expected to provide this correlation. The
task will be large and time consuming, but crucial to the System
Generation process. It is not apparent that any automated
scheme can be used here, although some technique might con-
ceivably be devised to do so.

The correlation is envisaged to be as follows, again using
the example on conferencing.

VI-35




Feature 1

1.0 CONFERENCE; 1.1 BROADCAST; 1.1.2 Non-Pre-emptable=
Modules 01, 02, 04, 51, 52, 53, 60, 61, 62, 78

Feature 2

1.0 CONFERENCE; 1.2 PROGRESSIVE; 1.2.1 Pre-emptable =
Modules 01, 02, 03, 51, 52, 53, 60, 62, 63, 77,
79

The relationship depicted above represents an input to the
System Generation process which will be used when configuration
specifications are developed. Feature 1 indicates that for the
feature for non-pre-emptable broadcast conference, eleven modules
are needed. Modules are identified as 01, 02, etc. For a pro-
gressive conference which is pre-emptable, a list of the neces-
sary modules are given. Notice that the code conversion modules
outlined in the past section to construct these correlations
have been used.

This information would be entered into a table, accessible
by the System Generation logic, when either of these features
capabilities were required. The process of selection during
System Generation operation would be automatic.

The correlation process is considered in greater detail in
paragraph 4.1.3.3.4.

4.1.3.3 Procedures

The immediately preceding sections concerning module and
function identification and correlation have provided a pre-
liminary method by which the software system can be viewed, con-
structed, and grouped. This section addresses the ordering of
the modules themselves, relative to their hierarchial structure
and execution sequence. This is a vital portion of the linking
process. The modules must not be arranged in random, but in a
predetermined order. That order requires specification.

Before examining this subject in detail, a digression is
needed for background information. The overall structure of a
software system should be viewed, in terms of how it is put
together, and the interrelationship of its parts. A Circuit
Switch structure is used for the example, highlighting these
areas which deal with the call processing logic.

4.1.3.3.1 Background
In general, the basic elements of the Circuit Switch in-

clude the following distinct sections.

VI-36




-

(1) Scanning Logic - The Supervision Signaling Function,
which consists of that portion of the system which
provides for the supervision of terminations attached
to the system.

(2) Register Logic - The Address Signaling Function, which
consists of the portion of the system which provides
for the dialed digits reception, and causes the out-

pulsing of digits to distant switchboards. This
logic would also receive digits incoming from other
switchboards.

(3) Matrix Logic - The Matrix Control Function, which con-
sists of the software which interfaces with the
matrix to cause path connection and disconnection
operations, and tone injections in certain systems.

(4) Translation Logic - Part of the Call Processing Func-
tion, which provides the section of the system which
performs the analysis of address digit information,
and translates that information into subscriber ter-
mination addresses or into a trunk group selection
for calls progressing outward to distant switchboards.

(5) Non-Register Processing - Also part of the Call Pro-
cessing Function, which provides the various call
processing tasks which are performed prior to or after
the dialing and translation phase of the call. This
includes initial off-hook processing, classmark or
feature privilege checking allowed per subscriber, re-
moval of ring and ringback and associated timing, and
busy tone control.

The above overview of the process does not totally present
the entire picture, however. To belabor the definition a bit
longer, the participation of each section must be considered
during the establishment of a call.

The scanning logic operates periodically to determine on-
hook/off-hook signals, among others. An off-hook signal is then
initially handled by this logic, which delivers information to
the non-register processing segment. In this process, the
terminal which is requesting service is compared with pre-stored
data, such as type of register required, direct access capa-
bility, etc.

If the data indicates that a register is needed, an idle
unit is selected. The connection of the terminal to a register
is handled by the matrix logic section. Thereafter, dial tone
is applied and the register logic accepts digits as they are
dialed. These digits are then processed by the translation
logic which determines where the call should be terminated; i.e.,

VI-37




-~

another local subscriber termination or a particular outgoing
trunk.

Assuming that a local subscriber is required, the connec-
tion is made between the two local subscribers, following dis-
connection from the register. Again, the matrix logic is en-
voked for this purpose. Thereafter, ring and ringback tones
are sent to the respective terminations, and the call handling
is then turned to the non-register logic section.

When off-hook is detected from the called subscriber, the
non-register logic removes ring and ringback and the subscribers
can begin conversation. From that point onward, the scanning
logic is directed to report on-hook conditions from either sub-
scriber, and upon that condition, a sequence would then be
undertaken to disconnect the matrix path.

As can be seen from the above call procedure, different
areas of the software logic are directed into execution to
handle different portions of the call sequence. A similar situ-
ation will occur when special call features, such as confer-
encing, pre-emption, etc., are required. Most Circuit Switch
software is designed in this manner, or variations on the same
theme, because different portions of the call establishment re-
quire different timing considerations. Also because the system
must accommodate many calls, simultaneously, each is likely to
be in some different state of completion at any given time.

The resources of the processor cannot then be totally dedicated
to any particular call from start to finish.

A block structure of these major software programs is
shown in Figure VI-1-1, with execution times associated with
each block.

4.1.3.3.2 Structure

The functions required within Circuit Switch software as
outlined in the previous section need to be considered in more
detail. It is consistent with current practices of software
design to view the software as a '"Tree Structure'. The begin-
ning of such a structure was outlined in paragraph 4.1.3.3.1,
where the major call processing modules were depicted. That
representation can be expanded further.

Consider the scanning logic mentioned earlier. This pro-
gram logic may consume 1 to 2 thousand instructions. It would,
therefore, according to the rules of module size, consist of 20
to 40 small modules. Each module is interconnected in some
predetermined manner with other modules to provide the desired
program sequence.

VIi-38




EXECUTIVE

SCAN NON- REGISTER TRANSI.A- MATRIX
LOGIC REGISTER LOGIC TION LOGIC
LOGIC LOGIC

each 25 ms each 200 ms each 12.5 ms each 25 ms upon demand

MAJOR SOFTWARE ELEMENTS

FIGURE VI-1-1

VIi-39




An example of a portion of the scanning logic could be
shown in tree structure as depicted in Figure VI-1-2.

The tree structure depicted shows some of the detail of the
scanning logic. The program is segmented into small functional
modules, each of which contribute some portion to the overall
objective.

While many systems are not developed in terms of such a
structure, there appears to be no reason which precludes such a
representation. It is basic to the System Generation concept
being discussed that such a representation be done.

Two points of interest are mentioned concerning tree struc-
tures.

First, there is no information within the module representa-
tion to indicate expected execution sequence. It is not in-
tended that there should be such an indication. The intent is
to show the modules which will be implemented, and their con-
necting sequence only. For instance, the scan logic shows a
module which addresses terminals of type one. Submodules show
verification and code conversion modules. It cannot be ascer-
tained, except intuitively, which is executed first or second,
or if any order prevails at all. There should exist other docu-
ments (Sequence Diagrams) which show this relationship. The
intent in System Generation is not to produce an operational
sequence knowledge, but rather to catalogue the components of
the system and organize them into some workable configuration.

Second, for some branches of the structure, a block may be
shown which appears to be identical to those which exist in
other branches. (Branch is defined as a collection of modules
which when taken together, constitute an identifiable system
function). These branches, in fact, may contain some of the
identical logic, duplicated or, on the other hand, the logic may
not be duplicated. Again, the intent here is to provide for the
tree structure to reflect logic in each area which is required,
without showing interconnections to prevent duplication. As an
example, the scanning logic shown in this section reveals a
module called "Binary to BCD'" which is repeated twice. It is
necessary that this module be made part of both the Type 1 and
Type 2 processing. Instructions concerning the requirement for
duplication must be given to the System Generation process in
order to handle it appropriately.

Returning to the main topic now, it can be seen that some
method must be employed which instructs the System Generation
facility according to the manner in which the modules should be
arranged. It would have to know which modules should be grouped
within the scanning logic, which into the non-register logic,
etc., and how to arrange the modules within each section.

VI-40




2-1-1IA FYNOIA
JYNLONYLS OIDOT ONINNVOS

aod aod
oL oL aod AMVNIE
XYVNIE AYVNIE | | OL IIOSV | |OL IIOSV
viva viva TONANDAS
SSTO0ud o ttict I0dNI SSEO0Yd L0dNT OISHTANOD
YIAITAA | | ¥IAITAQ | [ AIHIA -aud AATHIA 2a00
YTISNVEL
:mmwmmm Z 3dAL 1 3dAL
~HAINT TYNINYIL TYNIRYIL
"TOY.LNOD

NVOS

Vi-41




In order to accomplish this, it is necessary to consider
further the identification of modules beyond that already under-
taken.

4.1.3.3.3 Further Identification

The identifiers which were given to the small modules in
paragraph 4.1.3.2, serves only to correlate each segment with
respect to its use with various system features, but there was
no information regarding major program blocks with which they
should be associated.

A block identifier is needed for this purpose. Suppose
that three character identifiers are chosen for each program
block. The assignments for the Circuit Switch software could be
designated as follows:

Scanning Logic = SCL
Non-Register Logic = NRL
Register Logic = RGL
Matrix Logic = MXL
Translation Logic = TRL

It likewise seems necessary to expand upon the individual
module identifiers initially undertaken in paragraph 4.1.3.1.
When the correlation between modules and functions is made, as
in paragraph 4.1.3.2, these identifiers would then be added.
The previous example is shown with additional identification in
Figure VI-1-3.

Each module is identified in two ways. The program identi-
fier (SCL in this case) reveals that all modules names are to be
included within the total program composing scanning logic.

In addition, each module is represented by a letter and two
digits. There is no inherent reason why an expansion of letters
and numbers could not be utilized. The letter is used to al-
locate program modules to various levels within the hierarchy.
The letter "A" represents the topmost level, "B'" the second,
etc.

The two numeric digits of each module identifier are used
to identify each module within a particular level. It is prob-
able that as the tree structure develops from top to bottom, the
number of modules will increase at each level. However, it is
doubtful that more than two digits are needed to identify the
modules, even at the lowest level.

The ability to identify each module within a program ap-
pears to be satisfied using the previous notation. But now it

VIi-42




€-T-IA JYNODIA
AD00T1d OIDOT ONINNVOS aITIVLIA

NVOS

aoda aog
oL oL aod XYVNIg
X¥VNId X¥VNIg OL IIOSV | |oL 1108V
$0at10S £0a-10Ss Z20at+710S 10Q-10S
viva Viva FONINDIAS NOIS
383004d youyd LNdNI SSAD0ud LNdNI -4IANOD
YIAITIA YIAITIA AJIIHIA -q4d AJIYFA c(e(e)e)
90017108 004108 %00-{10S €00t'10S 2004108 100-{108
YAISNVHL
VLVd Zz ddAL 1 ddAL
AVED0ud
CNTINT TYNINYAL TYNINYAL
€0gaf10s zoga}1os 1049}108
TTOYLNOD

VI-43




is desired to associate each branch of the tree structure with
all of its members. This will become important during the cor-
relation process discussed in the following section.

It will frequently occur that individual branches provide
more than one function. Each function may require only a sub-
set of the logic contained within the branch. For a particular
configuration then, it may not be necessary to have all com-
binations. Some means must be provided to select the partic-
ular subset(s) required.

In order to accomplish this, additional identification
indicators to the modules must be added. These indicators will

instruct the system about separate branch functions. Figure
VI-1-4 shows further identification of the Type 1 terminal.

A special indicator, attached to each module identifier, is
shown. For this example, the topmost module indicates that
there are three functions (A, B, and C) performed by the branch.
Each module which contributes to function A is so marked. Func-
tions B and C follow the same procedure.

This example might represent a terminal which when so equip-
ped, transmits ASCII and for others, transmits binary informa-
tion. Further, the translation which is required might be to
BINARY for certain functions and into BCD for others. It can
also be seen that the verify module is only used when functions
A and B are performed.

The modules which are used for each function are:

Function A - SCL-BO1-A,B,C; SCL-C01-A,B,C; SCL-CO02-A,
B; SCL-DO1-A

Function B - SCL-BO1-A,B,C; SCL-C01-A,B,C; SCL-CO02-A,
B; SCL-DO0O2-B

Function C - SCL-BO1-A,B,C; SCL-COl1-A,B,C; SCL-D03-C

The entire program block for the scanning function can now
be identified as shown in Figure VI-1-5.

There is a second method of module association which would
not require any further identification of modules. This method
would associate modules in the order by which they are pre-
sented to the system. An example using the previous tree struc-
ture is given.

SCL-A01, SCL-BOl1l, SCL-COl, SCL-CO2, SCL-DOl1, SCL-DO2,
SCL-DO03.
SCL-A01, SCL-B0O2, SCL-C03, SCL-C04, SCL-DO04

SCL-A01, SCL-B03, SCL-C05, SCL-CO06
Vi-44




SCL-BO1-A,B,C

TERMINAL
TYPE 1
SCL-CO}-A,B,C SCL-C03-A,B
CODE VERIFY
CONVERSION INPUT
SCL_Dp1-A SCL-D02-B SCL-Dp3-C
ASCII TO ASCII TO BINARY
BINARY BCD TO
BCD

TERMINAL IDENTIFIER BRANCH

FIGURE VI-1-4

Vi-45




S-T-IA HYNDIJI
AD0Td WVHD0Hd TVNOILONAA OIDOT ONINNVOS TATIVIIA

aod aod W

oL oL aod AHYNIE

AHVNIE XYYNI] OL IIOSV OL IIOSV

V-$0a-"10S 0-£0¢-10S  d-Z0fI-10S <-How-qum

m

ﬂ 1 ; 1
viva | Vivd TONINDIS NOIS |
SSAD0dd | qoyud LNdNT SSAD04d LNdNT ~4IANOD |

| ¥3AITAQ | ¥IAITHC | AIIHIA -q4d KIIHAA 200D
¥v-903-10S v-G00+108 ¥V-$03-10S V-£00-"10S g°V-200-10S 0°‘d‘V-1pO-10S

!

|

YAISNVHL
oy ¢ ddAL T 4dAL
THTINT TYNINYEL TVNINYEL |
g‘v-g0d-10S v-2ag-10s 0'd‘y-108-108

TOHLNOD
NVOS

TOV~T10S

VI-46




T

This method is simpler because it does not require addi-
tional identifiers to interrelate the modules. However, it
suffers in completeness because only main branches may be so
associated, and lower level branches may not be specified. The
lack of this capability may not incur any serious problems, de-
pending upon the eventual use which is made of these branch
identifiers.

For the purpose of the ongoing discussion, however, the
first method outlined will be used.

4.1.3.3.4 Further Correlation

At this time, it has been possible to identify totally each
module individually, associate all modules which belong to the
same branch, identify modules within a branch which perform
separate functions, and identify them with respect to major pro-
gram blocks. The next step in the System Generation process
involves the correlation between modules and functions. This is
an expansion of what was begun in paragraph 4.1.3.2.

The need exists to identify every possible function which
the system is being constructed to handle. Many of these func-
tions will span the entire spectrum of major program blocks,
wherein, only certain parts of the functions are provided in
each block. This is a laborious task, but crucial to the de-
sired end result.

The task can most easily be accomplished while the software
design is in-progress. The designer of each program block is
the logical one to provide this function. This means that an
additional task will be superimposed upon the program design,
with a corresponding increase in manpower per block. It is
assumed that the design is being accomplished according to the
Structured Programming rules so that the overall objective can
be met.

In addition, the gathering of information will have to be
specified for the software designer, in terms of what informa-
tion is to be collected during the design stage. He should be
aware of how the logic he is developing is to be used so that
he can make the appropriate correlations. A partial list of
what might be submitted to him is shown below.

Extended Call Features

(1) Direct Access Dialing
(2) Abbreviated Dialing
(3) Call Forwarding

(4) Call Transfer

VIi-47




(5) Line Grouping
(6) Call Placement Restrictions
(7 Busy Diversion
(8) Camp-on Busy
(9) Group Hunting
(10) Remote Answer
(11) Attendant Recall
Digit Reception

€1) Dial Pulse

(2) DTMF

(3) MF

(4) MF Confirmation

Using the supplied list, the designer would then consider
which modules in his design participated in any of the list
items. The previous example of the scanning logic can be used
to explain his duties.

The initial task of the software designer will be to ident-
ify the modules in his program block as was outlined in para-
graph 4.1.3.3.3. Having done this, he can now begin the corre-
lation process.

He begins by analyzing each list item, determining whether
any of the logic supported the particular item, and denoting
those which do. An example of a chart which he might prepare
illustrates the technique.

System Function Modules
(1) Direct Access Dialing None
(2) Abbreviated Dialing None
(3) Call Forwarding None
(4) Call Transfer None
(5) Line Grouping None
(6) Call Placement Re- None

strictions
(7) Busy Diversion None
(8) Camp-on Busy None
(9) Group Hunting None

VI-48




(10) Remote Answer None

(11) Attendant Recall SCL-AO01; SCL-BO1l; SCL-CO01;
SCL-D03; SCL-B03; SCL-CO05;
SCL-C06

¢1) Dial Pulsing SCL-A01; SCL-B02; SCL-CO03;
SCL-C04; SCL-DO1; SCL-BO03;
SCL-CO05

(2) DTMF None

(3) MF None

(4) MF Confirmation None

It can be seen from the preceding list that the scanning
logic modules do not contribute to the implementation of the
first ten functions. This mears that if any change is made to
those functions, or if they are not included within the total
software system, that no changes or accommodations need be made
for the scanning logic.

The first item in the list which is affected then is the
Attendant Recall feature. It can be seen that all modules with-
in Terminal Type 1 are used, except for modules which convert
ASCII to Binary and ASCII to BCD and the Verify Input module,
and that all modules under the Interprogram Data Transfer block
are used but none under Terminal Type 2 are required.

The second list item which uses scanning logic is for Dial
Pulsing. For this function, all of the modules under Terminal
Type 2 are needed, one of the modules under Interprogram Data
Transfer is needed, but none of the logic included within Ter-
minal Type 1 is necessary.

Using this approach, it can be seen how all modules can be
isolated with respect to their participation in the multitude
of system functions, but it can also be seen that there is much
writing to be done by the software designer to provide this de-
tailed information.

In an attempt to reduce this effort, and to minimize the
number of manual errors which could occur, a modified version of
the task is envisaged. Recalling that in the previous section,
it was decided to denote the various sub-branches within the
structure, this idea can now be used.

It will be a common occurrence that an entire branch will
be needed to fulfill a funetional requirement. There will also
be many situations which will require only a subset of the en-
tire program block. Therefore, for the latter situation, it is
necessary to specify the branches which are needed within the
block to fulfill the desired function. The branch designators

VI-49




T

which are created, allow this to be done readily. Therefore,
the module correlation can be modified, using branch indicators,
to look as follows:

System Function Modules
Attendant Recall SCL-A01; SCL-B0O1-C; SCL-B03-A,B
Dial Pulsing SCL-AO01; SCL-B02-A; SCL-B03-A

The rule which is established and used here is that if any

branch indicator is specified in the notation, then all sub-
modules which carry that branch indicator are to be included.
In the example for the Attendant Recall function, it is necessary
to specify only the "C" branch of the Terminal Type 1 block since
no other modules were necessary. The Interprogran Data block was
reduced in specification since all modules were used.

In the example for Dial Pulsing, it is necessary to specify
only the topmost module of the Terminal Type 2 block, and one
branch from the Interprogram Transfer block.

The reduction in module correlation writing will increase
the efficiency of this effort and reduce the time required to
perform this function.

There is a further refinement which can be made to simplify
the association process. This is the concept of grouping. It
is defined in the following manner.

When a software designer constructs a major portion of
logic, there are certain associations which he knowingly makes
about his design. Those associations are usually implied, and
not explicitly stated. For instance, the designer knows that
when the Terminal Type 1 branch is used, it will always require
assistance from the Interprogram Data Transfer branch. There-
fore, the Terminal Type 1 logic is never sufficient by itself.
The same is true in the example for Terminal Type 2 branch.

This relationship will exist many times over in the soft-
ware design. Therefore, when it does exist, it can be expli-
cityly stated in some manner, for information handling purposes
during the System Generation process. It might be stated as:

If, SCL-B01-C, then SCL-B03-A,B
and If, SCL-B02-A, then SCL-B03-A

The previous correlation of functions to module relation-
ship would then look like:

VI-50




=

System Function Modules

Attendant Recall SCL-A01; SCL-B0O1-C
Dial Pulsing SCL-A01; SCL-B02-A

This grouping concept allowed the elimination of the re-
quirement to specify the Interprogram Data Transfer branch
altogether. It is expected that in a major system development,
this concept will reduce appreciably the module relationship
entries.

As an extension of correlation process, assume that some
feature, "X'", required all of the logic within the scanning
logic program block. All that would have to be called out then
would be:

Feature "X" SCL-AO1

This would indicate that all modules at lower levels should
be included.

There is another topic which needs to be addressed in this
section. It deals with the multiple allocation of modules in
menory.

When the software structure is drawn according to the struc-
tured programming criteria, it was of no concern that multiple
representations of the same module were constructed many times.
It was of some concern that the representation reflected the
logic which had to be performed rather than where it physically
existed. An examination of a large system would then most
likely reflect several modules which performed the same function.
It is foreseen that, in some cases, multiple copies would be
desired.

There must be provided, therefore, some means which in-
structs the System Generation process in the manner in which to
handle this condition.

The previous example reflects this situation for the BINARY
to BCD conversion. This is the same module used by Terminal
Type 1 and 2 but specified by two module identifiers. If the
software designer wants this logic repeated twice, then he need
not instruct the System Generation process in any other manner.
Since the generation process works with module identifiers only,
there is no indication that they contain the same logic, and
thus, it will be duplicated.

However, if the module needs only one inclusion, the soft-

ware designer must so indicate this requirement. This can be
accomplished through an equivalency statement as follows:

VI-51




Equate SCL-D03-C to SCL-D04-A

The System Generation system would then determine if both
of these modules were called out in the correlation process and
insert the logic only once. Of course, re-entrant procedures
would have to have been applied, if necessary. It is assumed
that the designer has taken this into consideration during the
implementation.

4.1.4 Qverlay

The designs currently being undertaken for both Message
and Circuit Switches have evolved over the past decade to the
point where these systems are reaching very complex magnitudes.
During this same period, equipment has matured appreciably. The
techniques applied to the solutions of these system problems,
particularly concerning software development, are capable of
using resources which were not heretofore available.

One of these areas concerns the use of overlay programs.

It is becoming feasible to consider that certain portions of the
software need not be resident within the main program storage
areas, i.e., magnetic core or solid-state memory. Some programs
may be used only occasionally and therefore, retained on some
external media, such as disc or drum storage devices. When this
is done, space must be provided within main memory which will
accommodate different overlay programs at different times.

Care must be taken when overlay solutions to memory utili-
zation is considered. An increased amount of system overhead
will occur. This will take additional memory space, as well as
the design of system protocols to involve this capability.
However, the chief problem which must be considered is response
time. It would be possible to configure an overlay capability
in such a manner that the potential system throughput is de-
creased. Or, the system may, under some conditions, fail to
respond in sufficient time so that it doesn't meet the intended
objectives at all.

The main reason for addressing the overlay possibilities
is in regard to program configuration criteria. A means must
be provided to identify programs which should be configured to
be always resident within the main storage areas of memory as
well as those which can reasonably be expected to accommodate
overlay handling.

The System Generation process will then have to auto-
matically handle both overlay and non-overlay programs. Some
method must then be devised to indicate this requirement. Ad-
ditionally, the system will have to physically configure the
total software system to be consistent with the overlay scheme.
This will amount to positioning the program modules on the input

VI-52




media (tape, drum, disc, etc.), so that proper identification
and loading can occur.

One final point is to be made for overlay programs. The
system measurement capabilities will have to take into account
overlay programs which contribute to the system loading. The
method which is advanced for this analysis, should also be used
for these kinds of conditions. However, transfer delay para-
meters may have to be inserted into the calculations to predict
the overall effect of using this technique.

4.1.5 Executive Control

The executive program is a special case of the applica-
tion program system in both Message and Circuit Switch environ-
ments. Because it is somewhat unique, some special procedures
are foreseen in its handling by the System Generation process.
The extent of any special handling will depend upon the kind of
function which it is designed to perform.

4.1.5.1 Functional Overview

Typically, executive programs are designed to handle the
scheduling activities of all other program modules within the
software structure. This involves using some pre-established
criteria by which programs are called into operation. Many
methods have been devised to provide this kind of information.

In addition, many executive programs are also tasked with
other system functions. For instance, the Input/Output func-
tions may be relegated to the executive. It then becomes the
chief program module which interfaces the common control sub-
system with the other elements of the switching system through
the transfer of the ''real world" data. The executive may also
be tasked with the duty of performing system maintenance activi-
ties, including switchover processes. Periodic checks would
then be made by the executive to verify the operational capa-
bility of most of the system. Special sequences would be called
into operation when these checks revealed error symptoms.

4.1.5.2 Special Problems

The make-up of the executive is not particularly important
in the physical construction of the software system, except that
portion which addresses scheduling. This area deserves further
attention.

It will be possible for the executive to conform to the
rules of module segmentation as is done for other software
blocks. Individual program modules can be identified and cor-
related into branches as with other programs. The problem is
not with this process, but in specifying the major program

VI-53




blocks which the executive uses, as well as indicating the pre-
ferred execution sequence that is to be followed.

To make this point somewhat clearer, consider the program
structure which was shown in paragraph 4.1.3.3. Five applica-
tion program blocks were depicted, each of which was indepen-
dently associated with the executive program block. It was
possible to consider each program block as a separate entity,
parse its logic into a multitude of small modules, and interre-
late those modules according to their logical branches. But
there was no consideration given to how that program block inter-
faced with the executive, or, how the System Generation process
could be informed of this relationship. This effort was deferred
until the executive control was discussed.

4.1.5.3 Viable Solutions

It is apparent that some means must be employed to con-
figure the executive with the other portions of the system. The
task may be considered as fulfilling two objectives:

(1) Parameterize the executive for scheduling programs at
predetermined times or conditions.

(2) Provide information to the loading process so that
processor capability can be ascertained.

Since it cannot be precisely determined how an executive
will be constructed in a given environment, it will be possible
to explore only certain conventions by which the cbjectives can
be met.

Assume that the scheduling process involves a table look-
up process for determining which program block to schedule.
This table then is composed of fixed entries which must be pre-
set to reflect the scheduling patterns the system must accommo-
date. It might also occur that execution frequency information
is contained in such a table. A representation of this table
is shown below, using the modules which were previously men-
tioned.

PROGRAM BLOCK FREQUENCY
Register Logic 12.5
Scan Logic 25.0
Matrix Logic I
Translation Logic 25.0
Non-Register Logic 200.0

VI-54




The table reflects each program which the executive is sup-
posed to schedule. Corresponding to each program is frequency
information which reflects the desired execution cycle. It is
assumed that a system clock is implemented in some manner and
used by the executive for timing purposes.

In the above example, the executive would schedule the
register logic each 12.5 ms, the scan and translation logic each
25 ms, and the non-register logic every 200 ms. The "I'", cor-
responding to the matrix control logic would indicate that this
program is directed into execution by a system interrupt, rather
than any timing criteria.

Some rules may also be applied by which the executive is to
schedule these programs. For instance, it could be stated that
the order is important, and therefore, the programs should be
scheduled from top to bottom according to their ranked position
within the table.

This would mean that at any period of time, when more than
one program was supposed to execute, the program which was
highest in the table would be called first.

This rule might also apply to programs scheduled by inter-
rupt, such as the matrix control logic. Since it occupies the
third position in the table, it would be activated only if lower
programs specified in the table were operating. That is, if any
program order higher was operating, the interrupt would not be
immediately honored.

It would be possible to inform the System Generation pro-
cess of this scheduling arrangement by instructions such as
those shown below.

Scheduled Order = RGL - AO0l, 12.5; SCL-A02, 25.0;
MXL - AO03, I; TRL - AO4, 25.0;
NRL - A0S, 200.0

The entries would then be processed and placed into the
table for executive program scheduling use.

The table structure used for scheduling can be extended
further to include additional information. Two more items might
be desirable. One of these could be the interrupt level assign-
ment which the application program is to use. This would occur
if multiple interrupts were handled by the system. The level
and their table ranking would then have to be specified.

Another condition could prevail which requires specifica-
tion. Consider that a particular program block is required to
execute only when certain conditions occur in the system. This
block is, therefore, demand dependent. No association with

VI-55




interrupts is made, nor can timing criteria be made available
for scheduling this logic. However, the program block must
still be ranked as are all other program blocks. The scheduling
table might then appear as follows:

PROGRAM BLOCK FREQUENCY
Register Logic 12.5
Scan Logic 25.0
Matrix Logic I3
Translation Logic D
Non-Register Logic 200.0

The table reflects the level of interrupt which is to be
used for directing the matrix logic into operation. It also
indicates that the translation logic is scheduled on a demand
basis. The top to bottom ranking criteria would still be used
in determining program execution order. An expansion of the
scheduling order instructions given to the System Generation
process could be developed to reflect these additional inputs.

There are, of course, several other methods by which an
executive system can be constructed. One such method is In-Line
code scheduling. This technique provides that the placement of
the instructions used in the executive cause the scheduling
sequence to occur. That is, the logic which enables the scan
logic to operate proceeds the logic which drives the register
logic, etc. The calling sequences are then different for each
program block within the system. For this technique, the indi-
vidual program segments would have to be uniquely identified
and physically ordered so that they could be arranged in the
correct manner.

A control structure for this type of scheduling implementa-
tion would look as:

Executive Control

Instructions for Scheduling SCL-AO1l

Instructions for Scheduling SCL-A02

Instructions for Scheduling SCL-AO03

Instructions for Scheduling SCL-A04

VI-56




Instructions for Scheduling SCL-A05

This structure provides the method for scheduling time and
demand dependent programs. As the executive begins each new
time cycle, the instructions it first executes cause it to
schedule the SCL-AO0l1 program block, followed by SCL-A02, etc.
Logic within each scheduling segment must address the unique
time requirements for that program block or demand conditions
if the program is so driven. A method must also be constructed
which provides interrupt control.

While this method of scheduling is perhaps some more ef-
ficient timewise in providing transfer to the appropriate pro-
gram blocks, it suffers from being more rigid and inflexible
to changes in the scheduling order. The System Generation user
would have to be more cognizant of the physical implementation of
the executive than with the first method outlined.

4.1.5.4 Correlation

The association of system functions to program modules
which is performed for all program blocks may take another form
when the executive logic is specified. This will depend upon
the content of the executive; how it is put together and for
what functions it is responsible.

If the system functions are provided entirely by the appli-
cation program blocks, then the specification of required
branches needs to be associated by some other criteria. This
association was aiready provided if the first method of execu-
tive structure described in the preceding section is considered.

When the program execution schedule was prepared for the
System Generation process, each program block which was to be
scheduled was explicitly stated. The System Generation process
may be made to use this data in some manner. This would be
practical if the entire executive is to be used, since no
branches were called out in that procedure.

For the situations which require the use of only portions
of the executive, a relationship will have to be specified.
This could be accomplished as shown below.

EXL-AO1-A = SCL-AO01
EXL-AOl1-B = NRL-AO1l
EXL-A01-C = RGL-AO1
EXL-AO1-D = TRL-AO1l
EXL-AOl1-E = MXL-AO1l

VI-57




The above assignments indicate various branches of an execu-
tive system which correspond to particular program blocks. This
would reflect program correlation rather than any system func-
tional relationship. It would, nevertheless, allow for the in-
clusion of only those portions of an executive which are required
for the system being constructed.

4.1.6 Overload Conditions

An important consideration which ought to be made for any
system configuration is that of processor loading. A concept of
System Generation has been outlined which allows for the inclu-
sion of pre-programmed modules into a total software system.

But what kind of loading will the processor experience when the
system is in use?

Usually, when processor loading is considered, the main
concern is with how much work the processor can undertake before
it reaches execution saturation. In exploring this area, two
conditions are of primary concern. First, it is necessary to
know that the processor is not being overloaded, and second,
how much loading does occur at expected peak levels.

Before exploring how it might be possible to predict
loading data, the reasons why this is considered to be a partic-
ularly important parameter when a System Generation facility is
developed should be explored.

4.1.6.1 Historical Trends

Historically, systems were created to fill some particular
switching need. A detailed specification was provided wh.ch
identified each function that was required during implementation.
Using the specification requirements, the system designers then
began to construct a system which fulfilled those needs.

Aside from the switching subsystems, (matrix, matrix con-
trol, line/trunk terminations, supervision detection, special
consoles and instruments), the common control area was analyzed
for the task in question. Of major concern here was:

(1) Which processor could best fill the needs?

(2) How many processors would be required?

(3) What kinds of common control interfacing should be
utilized?

(4) How much memory is needed?
(5) 1In what manner should the memory be partitioned?
(6) What interrupt levels would be required?

VI-58




(7) In multi-processor configurations:
(a) What tasks should be assigned each processor?
(b) How can data be exchanged between processors?

(¢c) What plan should be followed for error condi-
tions?

(8) How should the processor software be arranged?

(9) What maintenance/diagnostic capabilities need to be
provided?

There were, of course, many other considerations which were
taken into account during the design of each system.

One of the key areas which was addressed, but which was
most difficult to definitize, was loading of the common control
subsystem, or, overloading to be exact. There was certainly
an attempt to predict these data, particularly when the number
of required processors was addressed. These data were usually
based upon some previous system experience, which to some de-
gree approximated the requirements of the current system under
design. When no previous system closely resembled the current
undertaking, these data were extremely difficult to predict.
The use of this process has seen some very accurate predictions,
as well as some monumental catastrophies.

4,.1.6.2 Loading Criteria

The loading of a processor is primarily dependent upon the
external demands being placed upon it. These external demands
cause some process to occur, depending upon the task involved.
In a Message Switch Application, incoming message arrival rates
and delivery requirements are the prime external demands. In
a Circuit Switch Application, call placement rates and discon-
nect requests constitute the external demands. These external
demands can usually be predicted rather accurately, when the
environment in which the switch will operate is known. In many
cases, the specification to which the system is being designed
contains this intormation. The '"front-end'" loading can, there-
fore, be ascertained with substantial accuracy.

But how is it possible to predict the amount of time which
the processor's software will consume in handling these requests?
This is the information which is of real interest, and that which
is most elusive.

There are several contributing conditions which lead to the
consumption of processor time. A few of these are named:

(1) Overhead - that portion of the software which is re-

quired at all times, even during zero traffic condi-
tions.

VI-59




(2) Application Program Size - the amount of logic which
needs to be executed to provide call/message handling-
this will vary according to call/message type and any
special handling required.

(3) Code Execution Repetition - the sections of software
(usually loops) which are repeatedly executed, al-
though they may be quite small.

(4) Administrative Tunctions - those non-message/call
handling functions which must be performed immediately,
but which do not provide service for external demands.

(5) Maintenance Functions - that logic which must be per-
formed when fault indications are received. This is
aside from the normal system checking which is periodi-
cally performed.

(6) Scheduling - that portion of the system which decides
the order of program execution, and which itself con-
tributes to the loading.

Typically, the loading is determined "after the fact'; that
is, following the completion of the software design. A number
of techniques have been applied at this point, most of which
have had some success in determining these data. Hopefully, the
system is not overloaded, but is loaded sufficiently so that
the system was not grossly over-equipped. The latter is usually
not the case.

4.1.6.3 Prediction Techniques

Returning to the topic in question now, it would be poss-
ible to continue the same process for loading predictions as was
discussed above. But this process seems very restrictive and
inadequate for the type of System Generation being pursued.

It is assumed that a System Generation facility would be
based upon evolutionary deve.opments. Specifically, software
which is initially developed forms only a base for future addi-
tions, and that as each addition is created, it will be included
into a resevoir of software mocdules. A subset of the total soft-
ware capability could then be drawn upon to satisfy some partic-
ular switching requirement.

This concept precludes the possibility of drastically
changing the system requirements. Otherwise, a completely new
facility would have to be constructed, invalidating that which
was already done. The systems must then be generic, so that a
gradual evolution can be maintained.

Assuming that this commonality can be achieved, considera-

VIi-60




tion must be given to what methods can be constructed to pre-
dict processor loading. It will be possible to draw upon the
developed software modules and to form a viable software pack-
age. This means that hundreds of combinations of modules could
be configured and installed for some switching configuration.

It would be convenient to be able to specify, through the System
Generation facility, the exact requirements for a particular
switch, provide for all of the associated modules to be arranged
together according to some predetermined scheme, and have the
loading data automatically computed in some manner.

This seems to be a difficult goal. But one which can, per-
haps, be achieved nevertheless. Remembering that the software
was constructed of small modules, and that the ability to con-
figure parts of the system together is provided, all that re-
mains is to associate some execution time per module and to
indicate the sequence which is to be followed. It then seems
possible to build into the System Generation facility, the capa-
bility to use this information for loading determination.

The first step then is to place another task upon the soft-
ware designer. That task will be to determine, on a module
basis, the time required for its execution. Since the modules
are relatively small, this is no large task for each module,
although the composite will be substantial. If the typical
design process is observed, in many cases the software designer
does this himself, and for his own benefit during the implementa-
tion. Much of the information is then available, although re-
quests are not often made for it. This information should be
requested at the onset of the design task.

The second step will be to define the execution sequence
which should be employed. That is, how often does each partic-
ular module execute in a specified time period.

This information is more manageable if the branches are
considered, rather than individual modules. It has already been
established that the branches can be identified, each of which
contains several modules. An effort should then be spent to
determine branch timing. This is only a summation of unique
module times. No doubt this effort could be performed automati-
cally, since all module times and all branches were heretofore
defined.

With some method then, it has been possible to accumulate
times associated with every branch in the system. The frequency
of branch execution will then be required to determine loading
across the specified time period. It should be kept in mind
that only a selected set of branches will be utilized in this
process, specifically, those which form the software for the
configuration required.

VI-61




—_—

As was mentioned earlier, the prime consideration on pro-
cessor loading is to determine whether the system is overloaded.
This will undoubtedly occur at peak busy hours if at all, so that
is the loading level in which there is the most interest. This
maximum handling situation is what has to be specified in some
manner. This topic is further addressed in paragraph 4.3.3.1,
Simulation. The details of a method are advanced to solve this
problem.

4.2 SYSTEM SPECIFICATION

The System Generation facility under consideration is in-
tended to satisfy those requirements peculiar to Circuit Switch
and Message Switch configurations., It is not apparent that the
same framework could not be used for other types of applications
as well. The key in determining the approach suitability might
be based upon whether evolutionary software is required for other
systems, rather than in the techniques to achieve this end. It
is expected that modifications could be introduced to provide
variances in requirements if they exist.

The scope of this discussion, however, is in the constructs
of a facility for switching applications. The main concern here
is with possible system requirements, with which to tailor the
implementation. Certain requirements address the configuration
hardware, while others address the functional endeavors. Both
of these require handling by the System Generation facility.

4.2.1 Physical Configuration

The physical make-up of the system will have to be speci-
fied for each software system which is to be prepared by the
System Generation process. In order to do this, a base of hard-
ware elements which can be drawn upon has to be specified. From
this base, a subset can then be drawn, which will specify an
exact hardware configuration to be used for constructing an oper-
ational system.

The primary purpose in constructing the hardware configur-
ation is to enable the System Generation process to verify that
the proposed hardware meets all of the functional capabilities
which it is to undertake. A correlation, therefore, will be
performed. This correlation is considered in detail in paragraph
4.2.3. This information is used by the System Generation process
when the required capabilities are being assembled.

The list below reflects the kinds of hardware elements
which would be used during this process. It consists of elements
which relate to switching hardware modules and those which are in-
cluded within the common control subsystem.

VI-62




Switching Dependent Elements

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Number of line terminations - will specify the
maximum capacity which the system is expected to
handle.

Type of line terminations - will specify the kinds
of line terminations which can exist in the
system.

Number of trunk terminations.
Type of trunk terminations.

Number of register terminations - will specify
the maximum number of receiver/sender units which
the system can handle.

Type of registers - will specify the individual
kinds of registers which can be used in the
system.

Conference bridges - will specify the type, size
and number of bridges allowed in the system.

Matrix interfaces - depending upon the matrix and
associated control, this will specify the inter-
face which is to be handled with that subsystem.

Special terminations - will specify types and
maximum numbers of terminations, such as:

(a) Recording

(b) Paging

(c) Inter-matrix

(d) Encryption Modules

(e) Echo Suppressors

Attendant positions -~ will specify the number and
type of special position equipment.

I/0 channel characteristics - will specify unique
qualities of the I/O subsystem itself.

Common Control Dependent Elements

(1)

(2)

Communications Processor Units - the number of
CPU's which can be configured within the system.
This will include the maximum number of CPU mem-
bers, if a compatible family of CPU's exists.

CPU Arrangements ~ the physical configuration
which will be applied when more than one CPU is
required.

VI-63




T~

(3) Memory Configuration & Sizes - the plan which is
to be used for memory assignment, and the amount
of such memory.

(4) Peripheral Units - will specify for each type of
unit the number, capacity, speed, etc., which can
exist.

(a) Disc Units

(b) Tape Units

(c¢c) Printer Units

(d) VDU Units

The lists given above are only a sample of that actually

handled by the System Generation facility. It is expected that
several dozen such entries would be made a part of the hardware
base. It is further assumed that there would exist no upper

limit for this base, and that, as the system evolved, items
could be added or deleted as necessary.

4.2.2 Functional Configuration

There would be another list constructed and input to the
System Generation facility. This list would include all system
capabilities which are possible to be handled. This list is the
same as was used in the correlation process previously mentioned.
In that process, the software logic as it satisfied unique system
requirements was pulled together. This list will also be used
to correlate those same functional requirements to the physical
configuration of the system. All aspects of the total system,
both hardware and software, will therefore have been considered.

This section serves to identify certain functional capa-
bilities which are expected to be implemented with a Circuit or
Message Switch environment. Again, this is not a comprehensive
list, but one which could be used as a base on which further
capabilities could be added.

Functional Capabilities

(L) Numbering Plan - the address dialing formats which
may be called upon for use. This would normally
identify seven and ten digit plans which specify
area and office address codes and directory numbers.

(2) Trunk Group Arrangements - the manner in which trunk
terminations are grouped for outgoing route selec-
tion, and for incoming traffic handling. Maximum
numbers per group would be given here, as well as
allowable sizes within a group.

(3) Traffic Collection Procecs - the activity which
accumulates various call/message statistical data

VIi-64




(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

during on-line operation. This category would in-

clude many subsets of individual system capabilities,

each of which could be independently specified.

Precedence Level Handling - the assignment of prior-
ities by which calls/messages are to be handled.

The number of levels possible and some criteria by
which they are to be processed would be given.

Conferencing Types - the various types of confer-
encing available within the system would be called
out. This would include pre-set, broadcast, pro-
gressive and meet-me and any variations allowable.

Signaling Requirements - this would specify every
type of system signaling which is possible such as
dial pulse, DTMF, MF, MF Confirmation, etc.

Encrypted Call Types - this class would call out
unique characteristics for logic which handled
secure call/message placement.

Extended Call Features - this section would specify
all unique variations of call placement, including:

(a) Direct Access

(b) Abbreviated Dialing
(¢c) Call Forwarding

(d) Call Transfer

(e) Line Grouping

(f) Call Placement Restrictions
(g) Busy Diversion

(h) Camp-on Busy

(i) Group Hunting

(j) Remote Answer

(k) Attendant Recall

Message Length - the number of characters which can
be expected to be sent for handling within one
stream.

Message Block Structure - the structure of messages
themselves, in terms of field identifications, con-
tent type, and relative positioning.

Routing Indicators - the characters included within
a message which are used for destination route
selection.

Character Format Accommodation - the number and types

of formats which can be processed by the system.

VI-65




(13) Code Conversion Schemes - the requirements which
address the transformation of character code from
one representation into another. e

(14) Format Validation - the requirements for verifying
the character placement and content type prior to
its utilization.

(15) Header Parsing - the activity which is required to
break the message data content from preceding infor-
mation used for process handling.

4.2.3 Correlation

The System Generation facility will be built to use the
physical configuration and functional configuration lists in such
a way to verify that the requirements match the actual capability.
What is envisaged, therefore, is a process which ties certain
hardware elements or subsystems to particular functional require-
ments.

It is expected that the correlation process would be a
manual effort. Each functional capability would have to be com-
pared with hardware elements within the physical configuration
list to determine related hardware necessary. This process is
similar to that which was performed in associating software logic
to functional requirements. In the hardware correlation, however,
there may not always be a matching hardware element. For in-
stance, the capability to introduce abbreviated dialing is a soft-
ware oriented implementation, and does not require supportive
hardware elements. Neither does the capability to provide call
forwarding privileges to certain subscribers. But the require-
ment to provide conferencing, of any type, has associated with it
both software logic and hardware elements. The latter is the
kind of correlation which is of concern at this time.

A correlation would then be made to indicate system func-
tional dependency upon hardware elements. An example is shown
below.

Function Hardware

Line or Trunk Terminations

(1) Numbering Plan - 7 digit

(2) Trunk Group Arrangements Trunk Terminations

(3) Traffic Collection = Tape Unit
(4) Precedence Handling = None
(5) Conferencing = Conference Bridge

This kind of information would then become part of the
System Generation facility, which could be modified as system
features or equipment needs change.

VI-66




—p——

4.3 USER INTERFACE

Some consideration must be given towards the use of the
System Generation facility. Many of the tasks which will be per-
formed are built into this process and thus, are automatic.
However, it is still envisaged that the entire process should be
guided by personnel knowledgeable in the functions being per-
formed. It is imperative then that this interface is oriented
towards projected user needs in order to make an efficient and
reliable operation.

There are two areas of concern, therefore, equipment used
by operations personnel and procedures which they will follow in
controlling the process. These topics are considered in the fol-
lowing sections.

4.3.1 Equipment

The hardware which will be used for the System Generation
facility does not appear to require unusual configurations, nor
to consist of elements which are themselves unique. The task
which is to be accomplished with this facility is primarily data
processing oriented. Files from mass storage devices will be
accessed, merged with other files, and output on some suitable
media. The internal processing which occurs is expected to be
that of accepting user inputs and accessing files, where correla-
tion functions are performed, with periodic results returned to
the operations personnel.

Therefore, a system is envisaged which contains a central
processing unit, magnetic tape drives, disc units, a line printer,
and some equipment which allows user interface with the ongoing
process. It is not apparent that a "batch'" type processing opera-
tion could be utilized efficiently.

The user interface is perhaps the most important element
with this configuration. It would provide the use with inter-
active capability to initiate the process, and to control and
monitor that process while it was being performed. A CRT ter-
minal device is probably the most efficient from a user view-
point. In the interactive mode, intermediate results could be
displayed for inspection. Decisions which have to be made during
the process could be easily implemented at such a terminal. Al-
though a hard-copy output is not considered to be essential
during the process itself, it would nevertheless aid in providing
a reference during the operation.

4.3.2 The Process

It is now possible to explore the user procedures which
could be employed in fulfilling the final goal of the System
Generation facility, the overall process by which this is achieved,

VIi-67




the functions performed at each step, and the manual intervention
deemed necessary.

Prior to exploring the operations by which the user con-
trols the system, it is necessary to gain a clearer understanding
into the process itself. Since the end result of the System
Generation process is a '"tailor made' software system, a multitude
of software modules must be pulled together in some logical
fashion. This function cannot be done in a vacuum. In order to
do this, other elements must be defined, specifically, which hard-
ware modules will be needed to fulfill the stated switching role
and the system functions and features which the system is required
to handle. These inpuis will form the basis by which specific
software modules will be selected.

This process is presented pictorially in Figure VI-3-1.

The processes shown in Figure VI-3-1 will be discussed be-
fore elaborating in detail about each step.

The key item in the initial process involves the creation
of two correlation lists, one for hardware, and the other for
software. To arrive at these lists, all hardware and software
modules are matched with known system functional capabilities.
This process (Al and Bl) yields an association of modules to
capabilities. For instance, a functional capability to outpulse
MF digits would be reflected in both the hardware and software
lists. For hardware, this would associate MF digits outpulsing
to MF sender units. The MF sender unit may also require a partic-
ular interface to the processing subsystem. This hardware module
would, therefore, also be included. The software requirements
for MF sending would likewise be reflected in terms of one or
more software branches necessary to perform that function.

It is not of concern at this time, how many modules, either
hardware or software, are necessary. Only that the correlation
reflects all that are necessary for each individual capability.

The capture of this information, allows progression to the
next process step.

At this point, the major concern is with the grouping of
hardware modules to produce the physical equipment necessary for
a particular switch configuration. The unique system require-
ments are introduced here. The matching process, A2, combines
the hardware correlation list with those unique requirements to
specify the actual hardware to be used. This process will yield
a hardware equipment list matching the unique system requirements
specified.

A second output of the A2 process is used as additional
information in the selection of specific software branches to

VI-68




HARDWARE
EQUIPMEN
LIST

UNIQUE
SYSTEM
REQUIRE-
MENTS

A | MATCH-
[:> ING
PROC.

Al

0

HARDWARE
CORRELA-
TION
LIST

=

2,

MATCH-
ING

PROC.

FUNCTIONAL
CAPABILITIES
LIST

HARDWARE
MODULES
SUBSET

SOFTWARE

SYSTEM

USER PROCEDURES

) 8

Bl

e

SOFTWARE
CORRELA-
TION
LIST

B

MATCH-
ING

PROC.

&

%

SOFTWAR
BRANCHE
SUBSET

SYSTEM GENERATION TECHNIQUES

FIGURE VI-3-1

Vi-6¢2

MATCH- SOFTWARE
ING <:] BRANCHES
PROC. LIST

| UNIQUE
SYSTEM
REQUIRE-
MENTS




fulfill the system requirement.

In order to select the appropriate software branches, the
hardware modules subset, the unique system requirements, and the
software correlation list are all utilized. The hardware input
will invoke certain software modules, while the system require-
ments will invoke others. These requirements will draw from the
resources of the software correlation list. The combination of
these two criteria will establish the total software system
necessary to perform the task. The end result is a group of
software and hardware modules which when assembled together, will
satisfy the switching objective.

4.3.3 User Operations

The individual steps within the process which lead towards
the intended result will be considered.

The functional capabilities list is generated by personnel
who are cognizant of all capabilities existing, both hardware and
software. This is oriented towards systems functions, and may,
therefore, be likened to a specification defining all possible
attributes that a system might be expected to handle. Except in
this case, the equipment does exist and the software has been
developed to produce any of the stated requirements.

The acquisition of these lists has been outlined in pre-
vious sections. This information is entered into the system,
providing the primary data base from which system subsets will be
drawn. The user of the System Generation facility can, therefore,
draw upon any of the specified capabilities contained within this
data base.

It will also be a user function to update this information
as new and proven hardware and software modules are made avail-
able. He would be able to insert or delete to the list as the
system evolves. This is a vital function since it is expected
that the System Generation facility will take upon a larger and
larger role in equipment configuration as time progresses. New
techniques will be developed which extend the switching capa-
bilities beyond those originally introduced.

The next step will be the introduction of those system re-
quirements which the switch is expected to perform in a particular
environment. The user would key these into the system as a sep-
arate process. This is similar to preparing a specification for
off-the-shelf procurement.

There are many approaches which could be considered here.
One is simply a random input of capabilities which the system is
expected to handle. It would not matter which item was first
introduced since the system would be expected to validate the

VI-70




inputs and choose the appropriate equipment after all entries
were made. However, the random input lacks any semblance of
order, and thus, would most likely require further information
or corrections in subsequent entry procedures.

It seems more plausible that some order of entry should
be considered. One feasible approach would take the form of a
question and answer format, in which the system queried the user
in successive steps. If this was done, the entries would be con-
sidered sectionalized. For instance, all entries about the end
user equipment could be introduced first, followed by supervi-
sion procedures, special consoles, etc. Using this approach,
the input process would be simplified by progressively displaying
all possible end user equipment available, all supervision pro-
cedures, all special consoles, etc. The user would select those
which matched his specific requirements and would enter the
number of each that was needed. The physical arrangement of the
equipment could likewise be specified if necessary.

At some point in this process, the user begins to specify
the equipment which is commonly shared and traffic dependent.
Two possibilities exist here. First, it might be initially im-
practical to automate traffic calculations into the System Gen-
eration facility. The user would, therefore, use some predeter-
mined knowledge in specifying the numbers of these units. The
system would be equipped with whatever the user specified.

However, after some period of time, it might be deemed
more desirable to include within the System Generation facility
some traffic calculations which provided aid to the user in
specifying numbers for traffic dependent equipment modules. Based
upon the expected traffic, the system would call out for a cal-
culated number of modules. The user would be able to modify these
numbers based upon some additional informatior.

For the above process, the matching process, A2, would con-
tinue for the hardware throughout all of the user/system inter-
action. At the completion of the hardware related phase, a com-
plete hardware equipment list would be printed.

Although this procedure outlined for hardware specifica-
tion need not necessarily be made a part of the System Generation
facility, some manual process would otherwise have to be sub-
stituted. This is possible, but the penalty is that the specifi-
cation of the hardware and software would be done under separate
processes, with the possibility of inconsistencies being intro-
duced.

It would be valid, of course, to eliminate the hardware
specification procedure in the event that no changes to the equip-
ment configuration were necessary. This situation would exist if
the same hardware was applied in a different manner through soft-
ware reconfiguration only. The System Generation concept should

VIi-71




not preclude this possibility.

The next process which the user would be undertaking is
the specification of software capabilities. Those functions
which tie the entire system together, to provide the end result,
need to be introduced. This process parallels that which was
undertaken for the hardware modules. 1In fact, many of the system
functions, which required modules of hardware, will require
counterparts of software.

Some elaboration is needed at this point. It can be said
that the mere introduction of unique system requirements is not
sufficient for the specification of software. The input from the
hardware specification will describe the actual equipment used.
These inputs are used to invoke appropriate software modules such
as particular supervision procedures, matrix interface procedures,
and particular peripheral equipment software interface logic.
These are necessary so that the correct equipment interface pro-
cedures are included in the end product.

The specification impact from the System Generation user
for unique system functions does not address equipment character-
istics, but rather those user functions which the system is being
constructed to provide. Therefore, the kinds of inputs which are
considered here are features oriented, such as abbreviated dialing
conference privileges, numbering plan, message characteristics
and formats, and timing characteristics.

It is expected that there will be many system functions
available from which to draw. It would seem logical to implement
some order of entry which blended with other organizational pro-
cedures in which the System Generation facility is used. It
should be, however, comprehensive and simplified to enable the
user to specify easily the desired system.

Having entered all of the system functional capabilities,
and effecting the acquisition of the appropriate software modules,
the final user operation addresses the configuration of these
modules. Some order already does exist by virtue of the manner
in which the branches were originally constructed. This was
covered in previous sections. What is important here is intro-
ducing execution cycles which the software is expected to main-
tain.

The executive program is the chief means by which sched-
uling will occur. A possible method for assigning execution
cycles, introduced previously, effects this order assignment.

The user would be interested in ascertaining whether the configur-
ation he has produced is effective in meeting the traffic condi-
tions which the system is expected to handle. It would be pos-
sible for instance, to select the appropriate software modules,
but to arrange them in several different configurations. Some of
these configurations may not be optimum in meeting the known re-

quirements.
VI-72




What would be advantageous is for the System Generation
facility to verify in some manner the throughput capability.
Several configurations could be simulated under the direction of
the System Generation user and a selection made which best fits
the requirements. This capability is addressed in the next sec-
tion.

One additional task which the System Generation user would
be concerned with is overlay software logic. It may be desirable
for certain segments to be rolled-in at particular times rather
than being permanently resident in main memory. A knowledge of
the software system organization would need to be known in some
detail to allow a workable system arranged with overlay logic.

The user would need to know, for instance, which software
blocks are capable of being dynamically allocated to storage
space, and the size of each block which could be so handled.
Another important consideration in allowing or disallowing over-
lay procedures concerns what penalities, if any, would be in-
curred from this implementation.

Each block which provided overlay techniques to be applied
would have to be tagged with some conditional information speci-
fying criteria mentioned above. The System Generation user would
then make a decision as to the advisability of each block in
question.

4,3.3.1 Simulation

Many kinds of simulations exist which perform various roles
in systems design and test. Regarding the System Generation
facility, it is not the concern with attempts to verify correct-
ness in logic or code. It is presumed that prior to the inclu-
sion of any software branch into the software branches list that
these types of verfiications would have been made. The insertion
of faulty programs is, therefore, not anitcipated.

The primary concern is with the effectiveness of the system
put together in this facility. Specifically, the effectiveness
in terms of throughput. This must be equated to individual pro-
gram execution times.

To accomplish this end, further information must be gained
about the execution times of individual branches which constitute
a program. This would be a composite of all execution times of
the modules which composed a branch. The problem which surfaces
here is two-fold. First, as noted previously, the programmer
would need to calculate approximate times per module. This in-
formation would be collected and entered at the branch level.
This requirement does not become particularly difficult when it
is considered that individual modules are relatively small. Each
module is performing only a small role in the total system task.

VIi-73




Following the module coding, it is not foreseen that much effort
would need to be expended in determining the execution time.

The second problem is perhaps more difficult and time con-
suming. Consider that for any particular branch that several
modules exist, and that only certain modules may need to execute
when that branch is entered at a particular time. Some means must
then be determined to capture the normal execution time per
branch.

Since the main concern is with approximations, as stated be-
fore, this program can be simplified. It will take some effort,
but the pay-off can be significant. Normally, each branch can
be determined to have an execution sequence which causes minimal
execution times and also maximum execution times. These can be
determined by inspection and recorded. It is also conceivable
that the path through a branch may also have a normal execution
route, which is either one of the two extremes, or somewhat in
between the two. These times would represent variances in
handling the function which the branch was designed to perform.
That information can then be captured.

Therefore, three distinct branch execution times can be ac-
cumulated; best case, normal case, and worst case. These times
are then associated with each branch placed into the software
branches list. The System Generation facility could then make
use of this information in an automated way to calculate the as-
sociated execution times of a specified software configuration.
This is possible since all branches are known, all things per
branch are recorded, and the configuration is defined. A summa-
tion of these times across some defined interval will deliver
approximate loading values. The calculations could be made for
all three specified branch times, or as a mix of combinations of
those times based on some probability of occurrence.

A structure which reflects the timing of three branches is
shown below.

VIi-74




PROGRAM (500-100-25)

BLOCK A
(250-300-480) (200-200-200) (400-450-520)
BRANCH A BRANCH B BRANCH C

Js | I
l | l | | j

—

Considering Branch A, the least execution time taken by the
logic is 250 us, the normal use is 300 us, and the maximum time
is 480 us. Note that Branch B timing remains the same for all
three cases.

The next step in determining processor loading concerns the
frequency of execution of each branch of the system. It must be
known how often a particular branch is entered in order to compute
the total amount of processing time across some predefined inter-
val of real time.

Fortunately, some of the information necessary to predict
this has already been generated. Recall that in the discussion
of the Executive Control, the program block frequency needed to
he specified. This information can now be used by the simulation
process to calculate execution frequency. This works well, ex-
cept for program blocks which are either demand or interrupt
driven. For these blocks, it is necessary to specify, for simu-
lation purposes, the frequency with which they will operate.

This will require a judgement by the system designer. The method
advanced for branch timing, giving three values, could be made
use of here as well. A knowledge of the system is important in
order to ascertain the most realistic procedure to follow. This
information is shown on the previous diagram. It indicates that
Program Block A is executed normally every 100 milliseconds; that
at least it is executed every 500 milliseconds and no more fre-
quently than every 25 milliseconds.

This program blcck might represent one which is normally
driven by demands or interrupts, but for simulation purposes, has

VI-75




been tagged with this execution frequency data.

It may be obvious at this point that no mention has been
made concerning the traffic levels which the system will be ex-
pected to handle. Until now, the main concern has been with the
logic flow within the software which supposedly is driven by some
external stimuli. That external stimuli is either messages re-
ceived and delivered or call placement/releases handled. The
quantity of these occurrences has a significant impact upon the
system loading. Therefcre, they must be considered to gain a
clearer projection of this timing.

Traffic information must be introduced into the system at
the branch level. This will either come from manual entries of
the usér, or through the automated traffic data mentioned earlier
regarding quantity of common equipment modules. The method of
input is not important here. How this traffic information is
utilized is the important issue. An example can best describe
the procedure.

Assume that the system being constructed is a circuit switch
application for 1000 subscriber terminations. Assume further
that the system also has assigned to it 300 trunk terminations.
The effect of the demands placed upon the software needs to be
calculated to form a true loading picture.

One method to achieve this is to isolate the areas which are
directly affected by call placements. These will include the
front-end scanning logic, register logic including address col-
lection and sending, address translations, and special features
logic employed in handling certain calls. Other areas will have
little or no increased loading when traffic levels are increased
or decreased.

The determination «f affected areas is not a particularly
difficult task. This should be accomplished by the system de-
signers, who are most cognizant of the applicable areas. Having
isolated these areas, it is possible to assign weighting para-
meters to them along with the conditions by which these parameters
are adjusted. For instance, a branch or branches which are af-
fected by seizure requests would be assigned weighting values
dependent upon traffic. Idle conditions will force this para-
meter to zero. Half-load traffic, defined as '"N'" number of
seizures per second would provide a second value. Full loading,
"2N" would force the parameter to a higher value. Intermediate
values could likewise be calculated.

The parameters are then used to modify the individual branch
timings calculated before. Some educated judgement is necessary
at this step to provide a realistic estimate of the parameter
usage. It may not be realistic, for instance, to double the time
of scanning when the system is fully loaded. It may only be

¢

VI-76




necessary to apply a weighted value of, say 1.3. The rationale
for this lies within the scanning design itself. It is con-
ceivable that the majority of the scan logic occurs independent
of traffic load, as was shown in Section 2, paragraph 2.4.3.2;
and thus, only small additional amounts of processing are re-
quired to handle new seizures.

Another example would be in the access logic necessary to
operate the matrix. In this case, the loading might be sub-
stantially increased by call placement activity. Assuming that
each call requires 'N'" accesses as an average to the matrix,
then each call will increase the loading by an equivalent
amount. Again, this determination is design dependent.

The concept which has been advanced for simulation of soft-
ware loading is an attempt to approximate that which would
exist in the real environment. This approximation could be
developed in great detail so that a very accurate picture is
determined.

No matter what level is attained, the end result would be
to give the System Generation user the opportunity to configure
the system in different manners to predict throughput perfor-
mance. Using several simulation runs, the one which indicated
the best overall performance for known criteria could then be
chosen. The system would then produce the necessary output for
system loading and corresponding documentation.

4.4 CONCLUSIONS

The concepts presented for the development of a System
Generation facility provide a technique which, if implemented,
would allow for the re-use of software, in total or in part,
for varying configurations and functional requirements of
switching systems. No attempt has been made to estimate the
effort needed to be expended in achieving this goal. This esti-
mate must be based upon a kKnown configuration of hardware and
software in order to be meaningful, and upon the degree of im-
plementation whichk would initially be undertaken. It is not
suggested that the initial attempt at System Generation should
encompass the entire spectrum of the generation process.
Rather, a more realistic approach would seem in order; one in
which various portions of the technique were applied, and built
upon in successive stages. However, early planning must be
made for evolution into the total system.

A concerted effort must then be made at the onset of a
system design in order to achieve a flexible and workable
System Generation process. Planning must be introduced at an
early stage os system development. One cannot reasonably ex-
pect that a system, already developed and in use, could be
accommodated in the manner outlined within this report. The

VI-77




possibility to include certain portions might be possible after
the fact, but a total system would necessitate a substantial
effort which most likely would negate any subsequent pay-off.

Crucial areas which need to be considered at an early
stage are:

e System Configuration

The elements which compose the hardware modules, their
interconnectivity, and modularity need to be uniquely
specified. A rigid system which does not afford flexi-
bility in expansion or contraction, nor additional add-
on equipment, would not seem to be a reasonable system
for which to construct a System Generation facility.
Therefore, the ideal system would allow adaptability

to changing configurational requirements.

® TFunctional Capability

It can reasonably be expected that the functions which
the system will be expected to perform will vary ex-
tensively from one configuration to another. Multi-
plicity of carbon copy systems do not require special-
ized configuration procedures and may be reproduced
easily by other means.

e Software Structure

The generally accepted procedures of Structured Program-
ming must be adhered to for consistency of design and
modularity. The failure to apply standard practices
will yield an unworkable or burdensome task for the user
to manipulate.

@ Identification and Correlation

The procedures outlined in this report need to be ad-
dressed during the software implementation to gain the
input material for the process. Although this informa-
tion could be derived after the design, it can be ex-
pected that an appreciable amount of effort would be
needed if this task is deferred. The availability of
knowledgeable personnel could then pose a serious pro-
blem.

e System Generation Software
The manner in which this software is created, and the ex-
tent to which it achieves the desired goal must be

carefully planned. This activity can parallel the
switching design task if the entire system is well

VI-78




planned in advance. Configurations of data which will
be available, expected operational procedures, and out-
put from the process, must be specified in sufficient
detail to provide the intended result.

While the concepts and techniques present within this re-
port should provide a basis on which a System neration facility
can be constructed, they are considered to be only a basis for
which further exploration of the topic may be made. The frame-
work has been provided in which further investigations may be
pursued.

VI-79




This volume, volume

Appendix

Appendix

Appendix

Appendix

Appendix

11

111

1%

PREFACE

VIT consists of fLve appendices.

Contains a descniption of vardious classical
processon architectures.

Contains an analysis of the advantages and
disadvantages of utilizing Content Address-
able Memonies in Circuit and Message
Switching applications.

Contains a GLossary of Terms and Acronyms
used throughout the final nrepoxrt.

Contains a Bibliography of articles and
nefenence books which were used throughout
the course of the study.

Contains a summary of§ Circudlt Switch and

Message Switch gunctional breakdowns and
caleulations.

Al-1




|

APPENDIX I

CLASSICAL PROCESSOR ARCHITECTURES

In order to determine the Communication Processor System
which is economically best suited to serve the previously de-
scribed applications functions, the following plan was

adopted:
(1)

(2)

(3)

(4)

The applications functions are discussed as if they are
to be implemented on a single sequential processor (uni-
processor approach). Although it soon becomes apparent
that this approach is not the practical solution for

the problem, it offers a means to normalize the evalua-
tion of other processor system architectures. The
approach also lends familiarity, logical simplicity,

and provides a wealth of historical emperical data.

The necessity of increasing throughput leads to a
search for '""Parallelism', i.e., by processing several
functions concurrently, or by processing the same
function for several events (calls, messages) concur-
rently.

The application functions are analyzed to determine

if an advantage may be gained by use of an associative
(content addressable) memory, and if further (speed)
advantage may be gained by associative processing.

The results of "optimizing'" each application function
with respect to several processor unit architectures
will then be weighted and merged to evolve the recom-
mended processor system architecture (Volume IV of this
report) and the resulting processor unit architectures.

In order to avoid confusion between the terms processor
unit and processor system, the following is offered.

A group of processing elements are considered a pro-
cessor unit if they execute machine level commands
from a single control device in synchronism.

A group of processing elements are considered a pro-
cessor system if they contain separate control units,
and execute machine level commands (relatively) asyn-
chronously. Note that a common '"Master'" control unit
can issue commands to several processing elements each
having its separate control unit. This constitutes a
system by our terminology.

AI-1




Fundamental Processor Unit Architectures

It is pertinent to describe several popular processor
unit types and briefly describe the properties of a processing
function which best exploits the advantages (or disadvantages)
of each. '"Advantages' and ''disadvantages' are relative to the
uniprocessor which has been adopted as a ''mormalizer'.

Uniprocessor Unit Architecture

Figure AI-1 shows a block diagram of the classical ''general
purpose'" machine. Only one stream of instructions is operating
on one set of data at a time. The fundamental means of in-
creasing throughput is to reduce execution and memory cycle
times. The limitations are therefore fundamental.

Two embellishments which have been utilized in the past to
increase throughput are "Insiruction Look-Ahead'" and '""Multiple
Machine States or Register Sets'.

"Instruction Look-Ahead'" is a means of having the ''next'
instruction ready for execution immediately on the completion
of the previous instruction, thereby completing two (or more)
operations in one memory cycle time. Full exploitation of this
concept requires an increase in the number of wires to the
memory unit such that multiple instructions are accessed during
one memory cycle time.

"Multiple Machine States or Register Sets' is a means of
saving storage cycles in the case of transfer of machine con-
trol from one program to another. This construct can increase
throughput if the nature of the process requires a significant
amount of jumping from one (sub) program to another. 1In the
case of fairly '"long'" routines within one program, the amount
of time saved (on a long time average) by eliminating the
storage cycle overhead is insignificant; in which case the only
"advantage' offered by multiple registers is a possible program-
ming convenience.

""ALU Pipelining'" (Unit) Architecture

"ALU Pipelining'", shown in Figure AI-2 is a means by
which "complex'" instructions may be mechanized to reduce ex-
exution time. The method is especially useful in floating
point arithmetic where a large amount of data must undergo the
same processing. One special ALU (Arithmetic Logic Unit) is
used solely to align exponents, another to multiply, another to
add, etc. The instruction ADD from the control unit enables one
set of ALU's and bypasses others, while the instruction MULTIPLY
would enable a different set of ALU's as required. The advan-
tage of this mechanism is lost if only logical manipulations
are required. Logical operations are 'simple'" and can be

AI-2




DATA

INSTRUCTIO

1/0

<————>J ALU

MEMORY

CONTROL
UNIT

UNIPROCESSOR UNIT ARCHITECTURE

SINGLE INSTRUCTION STREAM - SINGLE DATA STREAM

(SISD)
FIGURE AI-1

AI-3




CONTROL
UNIT
ENABLE
/ E/D E/D
DISABLE
#1 #2 #N
DATA [SPECIAL SPL SPL
ALU [ D/T 3 ALU S =
#1 #2 #N
(PARTIALLY
PROCESSED

DATA)

MEMORY

"ALU PIPELINING'" (UNIT) ARCHITECTURE

MULTIPLE INSTRUCTION STREAM - SINGLE DATA STREAM
(MISD)

FIGURE AI-2

AI-4




mechanized efficiently in one ''stage'" of ALU. '"Complex'" oper-
ations requiring several execution cycles can gain a speed
advantage by this construct, but they must be executed often
(statistically) if "ALU pipelining'" is to be economicallv jus-
tifiable. Other benefits of an ALU pipeline organ-

ization may be gained if it is possible to establish multiple
data paths through the ALU set with a minimum of bottlenecks
(determined by simultaneous contention of one special ALU).

(Note: The term pipelining'" was adopted from an analogy to
the operation of a pipeline. The analogy and the term have also
been applied to resource allocation in a multiple processor
system. "ALU pipelining'" is the only context in which we use the
term. )

Parallel Array (Unit) Architecture

The Parrallel Array Unit Architecture, shown in Figure AI-
3 is especially suited for applications where a large amount of
data can be processed simultaneously. The processes must be
(relatively) independent but similar. Each active Processing
Element, PE, is synchronously performing the same operation on
its particular data stream. Any PE can be activated or de-
activated independently, but if it is active, it is performing
the same operation as all the other PE's.

In order to exploit this type of processing, the data must
be ''synchronizable' to the process, i.e., the instruction stream
sequence 1is data independent, and the data must be ready on
demand. This implies that the data is not real-time, but is
resident at the time of processing. (Note the difference to
cases where the data is real-time, and the program sequence is
the dependent variable.)

This type of unit architecture is especially suited for
(Mathematical) Matrix operations, linear programming, table
look-up operations, digital filter design, sensor data pro-
cessing and pattern recognition.

Associative Array Unit Architecture

The Associative Array Unit Architecture, shown in Figure
AI-4 provides a means of exploiting the properties of an
Associative (or Content Addressable) Memory.

(1) Word Slice - An Associative Memory may be accessed by
a word address, causing the data at that address to
appear on the output lines. (This is the standard
mode for conventional RAM memories).

(2) Bic Slice - An Associative Memory may be accessed by a
bit position address, causing the contents of each bit

AI-5




~—r

CONTROL

UNIT
PE PE PE
#1 #2 e #N
N M

MEMORY MEMORY MEMORY
#1 #2 #N

PARALLEL ARRAY (UNIT) ARCHITECTURE

SINGLE INSTRUCTION MULTIPLE DATA STREAM

(SIMD)

FIGURE AI-

AI-6

3




CONTROL

UNIT
1 BIT N \
B
Z| PE 1
PE 2 DATA
MULTI =1
DIMENSIONAL |
ARRAY |
WORD (ASSOCIATIVE !
STORAGE) i
I
I
]
]
|
N PE N  |j&—>
SAMPLE
ALU'S

ASSOCIATIVE ARRAY UNIT ARCHITECTURE

SINGLE INSTRUCTION STREAM - MULTIPLE DATA STREAM
(SIMD)

FIGURE AI-4

AI-7




